We present a new method for constructing valid covariance functions of Gaussian processes for spatial analysis in irregular, non-convex domains such as bodies of water. Standard covariance functions based on geodesic distances are not guaranteed to be positive definite on such domains, while existing non-Euclidean approaches fail to respect the partially Euclidean nature of these domains where the geodesic distance agrees with the Euclidean distances for some pairs of points. Using a visibility graph on the domain, we propose a class of covariance functions that preserve Euclidean-based covariances between points that are connected in the domain while incorporating the non-convex geometry of the domain via conditional independence relationships. We show that the proposed method preserves the partially Euclidean nature of the intrinsic geometry on the domain while maintaining validity (positive definiteness) and marginal stationarity of the covariance function over the entire parameter space, properties which are not always fulfilled by existing approaches to construct covariance functions on non-convex domains. We provide useful approximations to improve computational efficiency, resulting in a scalable algorithm. We compare the performance of our method with those of competing state-of-the-art methods using simulation studies on synthetic non-convex domains. The method is applied to data regarding acidity levels in the Chesapeake Bay, showing its potential for ecological monitoring in real-world spatial applications on irregular domains.
This content will become publicly available on July 21, 2025
- PAR ID:
- 10540495
- Editor(s):
- Salakhutdinov, Ruslan; Kolter, Zico; Heller, Katherine; Weller, Adrian; Oliver, Nuria; Scarlett, Jonathan; Berkenkamp, Felix
- Publisher / Repository:
- PMLR
- Date Published:
- Volume:
- 235
- Page Range / eLocation ID:
- 61321-61348
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
We propose a new primal-dual homotopy smoothing algorithm for a linearly constrained convex program, where neither the primal nor the dual function has to be smooth or strongly convex. The best known iteration complexity solving such a non-smooth problem is O(ε−1). In this paper, we show that by leveraging a local error bound condition on the dual function, the proposed algorithm can achieve a better primal convergence time of O ε−2/(2+β) log2(ε−1), where β ∈ (0, 1] is a local error bound parameter. As an example application of the general algorithm, we show that the distributed geometric median problem, which can be formulated as a constrained convex program, has its dual function non-smooth but satisfying the aforementioned local error bound condition with β = 1/2, therefore enjoying a convergence time of O ε−4/5 log2(ε−1). This result improves upon the O(ε−1) convergence time bound achieved by existing distributed optimization algorithms. Simulation experiments also demonstrate the performance of our proposed algorithm.more » « less
-
Distributionally robust optimization (DRO) is a powerful framework for training robust models against data distribution shifts. This paper focuses on constrained DRO, which has an explicit characterization of the robustness level. Existing studies on constrained DRO mostly focus on convex loss function, and exclude the practical and challenging case with non-convex loss function, e.g., neural network. This paper develops a stochastic algorithm and its performance analysis for non-convex constrained DRO. The computational complexity of our stochastic algorithm at each iteration is independent of the overall dataset size, and thus is suitable for large-scale applications. We focus on the general Cressie-Read family divergence defined uncertainty set which includes chi^2-divergences as a special case. We prove that our algorithm finds an epsilon-stationary point with an improved computational complexity than existing methods. Our method also applies to the smoothed conditional value at risk (CVaR) DRO.
-
The non-convex complementarity constraints present a fundamental computational challenge in energy constrained optimization problems. In this work, we present a new, linear, and robust battery optimization formulation that sidesteps the need for battery complementarity constraints and integers and prove analytically that the formulation guarantees that all energy constraints are satisfied which ensures that the optimized battery dispatch is physically realizable. In addition, we bound the worst-case model mismatch and discuss conservativeness. Simulation results further illustrate the effectiveness of this approach.more » « less
-
Abstract—Given a collection of M experimentally measured subspaces, and a model-based subspace, this paper addresses the problem of finding a subspace that approximates the collection, under the constraint that it intersects the model-based subspace in a predetermined number of dimensions. This constrained subspace estimation (CSE) problem arises in applications such as beamforming, where the model-based subspace encodes prior information about the direction-of-arrival of some sources impinging on the array. In this paper, we formulate the constrained subspace estimation (CSE) problem, and present an approximation based on a semidefinite relaxation (SDR) of this non-convex problem. The performance of the proposed CSE algorithm is demonstrated via numerical simulation, and its application to beamforming is also discussed.more » « less