- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Hauenstein, Jonathan D (2)
-
Baskar, Aravind (1)
-
Cummings, Joseph (1)
-
Hao, Wenrui (1)
-
Hauenstein, Jonathan_D (1)
-
Hills, Caroline (1)
-
Hong, Hoon (1)
-
Plecnik, Mark (1)
-
Regan, Margaret H (1)
-
Smyth, Clifford_D (1)
-
Tang, Tingting (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract A standard question in real algebraic geometry is to compute the number of connected components of a real algebraic variety in affine space. This manuscript provides algorithms for computing the number of connected components, the Euler characteristic, and deciding the connectivity between two points for a smooth manifold arising as the complement of a real hypersurface of a real algebraic variety. When considering the complement of the set of singular points of a real algebraic variety, this yields an approach for determining smooth connectivity in a real algebraic variety. The method is based upon gradient ascent/descent paths on the real algebraic variety inspired by a method proposed by Hong, Rohal, Safey El Din, and Schost for complements of real hypersurfaces. Several examples are included to demonstrate the approach.more » « less
-
Hills, Caroline; Baskar, Aravind; Plecnik, Mark; Hauenstein, Jonathan D (, Mechanism and Machine Theory)
-
Hao, Wenrui; Hauenstein, Jonathan D; Regan, Margaret H; Tang, Tingting (, Journal of Scientific Computing)
An official website of the United States government
