skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2334021

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Cloud storage systems often use state machine replication (SMR) to ensure reliability and availability. Erasure coding has recently been integrated with SMR to reduce disk and network I/O costs. This brief announcement shares our experience in developing a leaderless erasure coding SMR system. We integrate our system Racos with etcd, a distributed key-value storage that powers Kubernetes. Racos outperforms competitors by up to 3.36x in throughput. 
    more » « less
  2. Bessani, Alysson; Défago, Xavier; Nakamura, Junya; Wada, Koichi; Yamauchi, Yukiko (Ed.)
    This paper studies the design of Byzantine consensus algorithms in an asynchronous single-hop network equipped with the "abstract MAC layer" [DISC09], which captures core properties of modern wireless MAC protocols. Newport [PODC14], Newport and Robinson [DISC18], and Tseng and Zhang [PODC22] study crash-tolerant consensus in the model. In our setting, a Byzantine faulty node may behave arbitrarily, but it cannot break the guarantees provided by the underlying abstract MAC layer. To our knowledge, we are the first to study Byzantine faults in this model. We harness the power of the abstract MAC layer to develop a Byzantine approximate consensus algorithm and a Byzantine randomized binary consensus algorithm. Both of our algorithms require only the knowledge of the upper bound on the number of faulty nodes f, and do not require the knowledge of the number of nodes n. This demonstrates the "power" of the abstract MAC layer, as consensus algorithms in traditional message-passing models require the knowledge of both n and f. Additionally, we show that it is necessary to know f in order to reach consensus. Hence, from this perspective, our algorithms require the minimal knowledge. The lack of knowledge of n brings the challenge of identifying a quorum explicitly, which is a common technique in traditional message-passing algorithms. A key technical novelty of our algorithms is to identify "implicit quorums" which have the necessary information for reaching consensus. The quorums are implicit because nodes do not know the identity of the quorums - such notion is only used in the analysis. 
    more » « less
  3. Various blockchain systems have been designed for dynamic net- worked systems. Due to the nature of the systems, the notion of “time” in such systems is somewhat subjective; hence, it is important to understand how the notion of time may impact these systems. This work focuses on an adversary who attacks a Proof-of-Work (POW) blockchain by selfishly constructing an alternative longest chain. We characterize optimal strategies employed by the adversary when a difficulty adjustment rule alà Bitcoin applies. 
    more » « less