Player-replaceability is a property of a blockchain protocol that ensures every step of the protocol is executed by an unpredictably random (small) set of players; this guarantees security against a fully adaptive adversary and is a crucial property in building permissionless blockchains. Forensic Support is a property of a blockchain protocol that provides the ability, with cryptographic integrity, to identify malicious parties when there is a safety violation; this provides the ability to enforce punishments for adversarial behavior and is a crucial component of incentive mechanism designs for blockchains. Player-replaceability and strong forensic support are both desirable properties, yet, none of the existing blockchain protocols have both properties. Our main result is to construct a new BFT protocol that is player-replaceable and has maximum forensic support. The key invention is the notion of a ``transition certificate'', without which we show that natural adaptations of extant BFT and longest chain protocols do not lead to the desired goal of simultaneous player-replaceability and forensic support.
more »
« less
Poster: Timestamp Verifiability in Proof-of-Work
Various blockchain systems have been designed for dynamic net- worked systems. Due to the nature of the systems, the notion of “time” in such systems is somewhat subjective; hence, it is important to understand how the notion of time may impact these systems. This work focuses on an adversary who attacks a Proof-of-Work (POW) blockchain by selfishly constructing an alternative longest chain. We characterize optimal strategies employed by the adversary when a difficulty adjustment rule alà Bitcoin applies.
more »
« less
- Award ID(s):
- 2334021
- PAR ID:
- 10508470
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing
- ISBN:
- 9781450399265
- Page Range / eLocation ID:
- 304 to 305
- Format(s):
- Medium: X
- Location:
- Washington DC USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Due to the proliferation of IoT and the popularity of smart contracts mediated by blockchain, smart home systems have become capable of providing privacy and security to their occupants. In blockchain-based home automation systems, business logic is handled by smart contracts securely. However, a blockchain-based solution is inherently resource-intensive, making it unsuitable for resource-constrained IoT devices. Moreover, time-sensitive actions are complex to perform in a blockchainbased solution due to the time required to mine a block. In this work, we propose a blockchain-independent smart contract infrastructure suitable for resource-constrained IoT devices. Our proposed method is also capable of executing time-sensitive business logic. As an example of an end-to-end application, we describe a smart camera system using our proposed method, compare this system with an existing blockchain-based solution, and present an empirical evaluation of their performance.more » « less
-
The objective of this study is to provide an overview of Blockchain technology and Industry 4.0 for advancing supply chains towards sustainability. First, extracted from the existing literature, we evaluate the capabilities of Industry 4.0 for sustainability under three main topics of (1) Internet of things (IoT)-enabled energy management in smart factories; (2) smart logistics and transportation; and (3) smart business models. We expand beyond Industry 4.0 with unfolding the capabilities that Blockchain offers for increasing sustainability, under four main areas: (1) design of incentive mechanisms and tokenization to promote consumer green behavior; (2) enhance visibility across the entire product lifecycle; (3) increase systems efficiency while decreasing development and operational costs; and (4) foster sustainability monitoring and reporting performance across supply chain networks. Furthermore, Blockchain technology capabilities for contributing to social and environmental sustainability, research gaps, adversary effects of Blockchain, and future research directions are discussed.more » « less
-
Bertino, Elisa; Shulman, Haya; Waidner, Michael (Ed.)Non-interactive zero-knowledge proof or argument (NIZK) systems are widely used in many security sensitive applications to enhance computation integrity, privacy and scalability. In such systems, a prover wants to convince one or more verifiers that the result of a public function is correctly computed without revealing the (potential) private input, such as the witness. In this work, we introduce a new notion, called scriptable SNARK, where the prover and verifier(s) can specify the function (or language instance) to be proven via a script. We formalize this notion in UC framework and provide a generic trusted hardware based solution. We then instantiate our solution in both SGX and Trustzone with Lua script engine. The system can be easily used by typical programmers without any cryptographic background. The benchmark result shows that our solution is better than all the known SNARK proof systems w.r.t. prover’s running time (1000 times faster), verifier’s running time, and the proof size. In addition, we also give a lightweight scriptable SNARK protocol for hardware with limited state, e.g., Θ ( λ ) bits. Finally, we show how the proposed scriptable SNARK can be readily deployed to solve many well-known problems in the blockchain context, e.g. verifier’s dilemma, fast joining for new players, etc.more » « less
-
Most permissionless blockchain networks run on peer-to-peer (P2P) networks, which offer flexibility and decentralization at the expense of performance (e.g., network latency). Historically, this tradeoff has not been a bottleneck for most blockchains. However, an emerging host of blockchain-based applications (e.g., decentralized finance) are increasingly sensitive to latency; users who can reduce their network latency relative to other users can accrue (sometimes significant) financial gains. In this work, we initiate the study of strategic latency reduction in blockchain P2P networks. We first define two classes of latency that are of interest in blockchain applications. We then show empirically that a strategic agent who controls only their local peering decisions can manipulate both types of latency, achieving 60% of the global latency gains provided by the centralized, paid service bloXroute, or, in targeted scenarios, comparable gains. Finally, we show that our results are not due to the poor design of existing P2P networks. Under a simple network model, we theoretically prove that an adversary can always manipulate the P2P network's latency to their advantage, provided the network experiences sufficient peer churn and transaction activity.more » « less
An official website of the United States government

