Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available January 28, 2026
- 
            Free, publicly-accessible full text available December 1, 2025
- 
            We investigate the existence of fair and efficient allocations of indivisible chores to asymmetric agents who have unequal entitlements or weights. We consider the fairness notion of weighted envy-freeness up to one chore (wEF1) and the efficiency notion of Pareto-optimality (PO). The existence of EF1 and PO allocations of chores to symmetric agents is a major open problem in discrete fair division, and positive results are known only for certain structured instances. In this paper, we study this problem for a more general setting of asymmetric agents and show that an allocation that is wEF1 and PO exists and can be computed in polynomial time for instances with:- Three types of agents where agents with the same type have identical preferences but can have different weights. - Two types of choresFor symmetric agents, our results establish that EF1 and PO allocations exist for three types of agents and also generalize known results for three agents, two types of agents, and two types of chores. Our algorithms use a weighted picking sequence algorithm as a subroutine; we expect this idea and our analysis to be of independent interest.more » « less
- 
            We study fair distribution of a collection of m indivisible goods among a group of n agents, using the widely recognized fairness principles of Maximin Share (MMS) and Any Price Share (APS). These principles have undergone thorough investigation within the context of additive valuations. We explore these notions for valuations that extend beyond additivity.First, we study approximate MMS under the separable (piecewise-linear) concave (SPLC) valuations, an important class generalizing additive, where the best known factor was 1/3-MMS. We show that 1/2-MMS allocation exists and can be computed in polynomial time, significantly improving the state-of-the-art.We note that SPLC valuations introduce an elevated level of intricacy in contrast to additive. For instance, the MMS value of an agent can be as high as her value for the entire set of items. We use a relax-and-round paradigm that goes through competitive equilibrium and LP relaxation. Our result extends to give (symmetric) 1/2-APS, a stronger guarantee than MMS.APS is a stronger notion that generalizes MMS by allowing agents with arbitrary entitlements. We study the approximation of APS under submodular valuation functions. We design and analyze a simple greedy algorithm using concave extensions of submodular functions. We prove that the algorithm gives a 1/3-APS allocation which matches the best-known factor. Concave extensions are hard to compute in polynomial time and are, therefore, generally not used in approximation algorithms. Our approach shows a way to utilize it within analysis (while bypassing its computation), and hence might be of independent interest.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available