skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2409815

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This paper presents a scalable and straightforward technique for the immediate patterning of liquid metal/polymer composites via multiphase 3D printing. Capitalizing on the polymer's capacity to confine liquid metal (LM) into diverse patterns. The interplay between distinctive fluidic properties of liquid metal and its self‐passivating oxide layer within an oxidative environment ensures a resilient interface with the polymer matrix. This study introduces an inventive approach for achieving versatile patterns in eutectic gallium indium (EGaIn), a gallium alloy. The efficacy of pattern formation hinges on nozzle's design and internal geometry, which govern multiphase interaction. The interplay between EGaIn and polymer within the nozzle channels, regulated by variables such as traverse speed and material flow pressure, leads to periodic patterns. These patterns, when encapsulated within a dielectric polymer polyvinyl alcohol (PVA), exhibit an augmented inherent capacitance in capacitor assemblies. This discovery not only unveils the potential for cost‐effective and highly sensitive capacitive pressure sensors but also underscores prospective applications of these novel patterns in precise motion detection, including heart rate monitoring, and comprehensive analysis of gait profiles. The amalgamation of advanced materials and intricate patterning techniques presents a transformative prospect in the domains of wearable sensing and comprehensive human motion analysis. 
    more » « less
  2. Abstract Polycrystalline yttrium aluminum garnet (YAG) ceramic doped with neodymium (Nd), referred to as Nd:YAG, is widely used in solid‐state lasers. However, conventional powder metallurgy methods suffer from expenses, time consumption, and limitations in customizing structures. This study introduces a novel approach for creating Nd:YAG ceramics with 3D free‐form structures from micron (∼70 µm) to centimeter scales. Firstly, sol‐gel synthesis is employed to form photocurable colloidal solutions. Subsequently, by utilizing a home‐built micro‐continuous liquid interface printing process, precursors are printed into 3D poly(acrylic acid) hydrogels containing yttrium, aluminum, and neodymium hydroxides, with a resolution of 5.8 µmpixel−1at a speed of 10 µm s−1. After the hydrogels undergo thermal dehydration, debinding, and sintering, polycrystalline Nd:YAG ceramics featuring distinguishable grains are successfully produced. By optimizing the concentrations of the sintering aids (tetraethyl orthosilicate) and neodymium trichloride (NdCl3), the resultant samples exhibit satisfactory photoluminescence, emitting light concentrated at 1064 nm when stimulated by a 532 nm laser. Additionally, Nd:YAG ceramics with various 3D geometries (e.g., cone, spiral, and angled pillar) are printed and characterized, which demonstrates the potential for applications, such as laser and amplifier fibers, couplers, and splitters in optical circuits, as well as gain metamaterials or metasurfaces. 
    more » « less
  3. Abstract Lithium‐ion batteries (LIBs) have significantly impacted the daily lives, finding broad applications in various industries such as consumer electronics, electric vehicles, medical devices, aerospace, and power tools. However, they still face issues (i.e., safety due to dendrite propagation, manufacturing cost, random porosities, and basic & planar geometries) that hinder their widespread applications as the demand for LIBs rapidly increases in all sectors due to their high energy and power density values compared to other batteries. Additive manufacturing (AM) is a promising technique for creating precise and programmable structures in energy storage devices. This review first summarizes light, filament, powder, and jetting‐based 3D printing methods with the status on current trends and limitations for each AM technology. The paper also delves into 3D printing‐enabled electrodes (both anodes and cathodes) and solid‐state electrolytes for LIBs, emphasizing the current state‐of‐the‐art materials, manufacturing methods, and properties/performance. Additionally, the current challenges in the AM for electrochemical energy storage (EES) applications, including limited materials, low processing precision, codesign/comanufacturing concepts for complete battery printing, machine learning (ML)/artificial intelligence (AI) for processing optimization and data analysis, environmental risks, and the potential of 4D printing in advanced battery applications, are also presented. 
    more » « less
  4. Abstract Composites play progressively significant roles across a spectrum of applications involving high‐performance materials and products within industries such as aerospace, naval, automotive, construction, missiles, and defense technology. Notably, oriented fiber composites have garnered substantial attention due to their advantageous attributes like a high strength‐to‐weight ratio and controlled anisotropy. Nonetheless, challenges persist in uneven fiber alignment, fiber clustering within the matrix material, and constraints on fiber volume, impeding the mass production of oriented fiber‐reinforced composites. In this study, we present a novel approach to 3D printing of uniformly aligned short fiber reinforcement in a composite of heavily loaded carbon and nylon. Capitalizing on the additive manufacturing potential of rapidity and precision, the extrusion process induces carbon fiber (CF) alignments in filaments via shear forces. The 3D‐printed structures that were created displayed impressive potential for customization. They consistently demonstrated improved mechanical and thermal properties when compared to the original nylon structures. Our methodology for producing uniformly dispersed and aligned short fiber reinforcement in polymer composites promises to propel the advancement of design and manufacturing for high‐performance composite materials and components. 
    more » « less
  5. Abstract Nanoparticles form long‐range micropatterns via self‐assembly or directed self‐assembly with superior mechanical, electrical, optical, magnetic, chemical, and other functional properties for broad applications, such as structural supports, thermal exchangers, optoelectronics, microelectronics, and robotics. The precisely defined particle assembly at the nanoscale with simultaneously scalable patterning at the microscale is indispensable for enabling functionality and improving the performance of devices. This article provides a comprehensive review of nanoparticle assembly formed primarily via the balance of forces at the nanoscale (e.g., van der Waals, colloidal, capillary, convection, and chemical forces) and nanoparticle‐template interactions (e.g., physical confinement, chemical functionalization, additive layer‐upon‐layer). The review commences with a general overview of nanoparticle self‐assembly, with the state‐of‐the‐art literature review and motivation. It subsequently reviews the recent progress in nanoparticle assembly without the presence of surface templates. Manufacturing techniques for surface template fabrication and their influence on nanoparticle assembly efficiency and effectiveness are then explored. The primary focus is the spatial organization and orientational preference of nanoparticles on non‐templated and pre‐templated surfaces in a controlled manner. Moreover, the article discusses broad applications of micropatterned surfaces, encompassing various fields. Finally, the review concludes with a summary of manufacturing methods, their limitations, and future trends in nanoparticle assembly. 
    more » « less
  6. Free, publicly-accessible full text available February 5, 2026
  7. As a treatment for the widely spread cardiovascular diseases (CVD), bypass vascular grafts have room for improvement in terms of mechanical property match with native arteries. A 3D‐printed nozzle is presented, featuring unique internal structures, to extrude artificial vascular grafts with a flower‐mimicking geometry. The multilayer‐structured graft wall allows the inner and outer layers to interfere sequentially during lateral expansion, replicating the nonlinear elasticity of native vessels. Both experiment and simulation results verify the necessity and benefit of the flower‐mimicking structure in obtaining the self‐toughening behavior. The gelation study of natural polymers and the utilization of sacrificial phase enables the smooth extrusion of the multiphase conduit, where computer‐assisted image analysis is employed to quantify manufacturing fidelity. The cell viability tests demonstrate the cytocompatibility of the gelatin methacryloyl (GelMA)/sodium alginate grafts, suggesting potential for further clinical research with further developments. This study presents a feasible approach for fabricating bypass vascular grafts and inspires future treatments for CVD. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  8. Our polyvinyl alcohol feedstock was prepared through carbic anhydride functionalization, UV curing during direct ink writing, and base treatment. The scaffold exhibited mechanical properties similar to pelvic floor tissue. 
    more » « less
  9. Carbon–carbon (C–C) composites are highly sought-after in aviation, automotive, and defense sectors due to their outstanding thermal & thermo-mechanical properties even surpassing those of alloys and other composites for exterme operations. 
    more » « less