skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2423105

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 15, 2026
  2. Despite being one of the oldest data structures in computer science, hash tables continue to be the focus of a great deal of both theoretical and empirical research. A central reason for this is that many of the fundamental properties that one desires from a hash table are difficult to achieve simultaneously; thus many variants offering different trade-offs have been proposed. This article introduces Iceberg hashing, a hash table that simultaneously offers the strongest known guarantees on a large number of core properties. Iceberg hashing supports constant-time operations while improving on the state of the art for space efficiency, cache efficiency, and low failure probability. Iceberg hashing is also the first hash table to support a load factor of up to1 - o(1)while being stable, meaning that the position where an element is stored only ever changes when resizes occur. In fact, in the setting where keys are Θ (logn) bits, the space guarantees that Iceberg hashing offers, namely that it uses at most\(\log \binom{|U|}{n} + O(n \log \ \text{log} n)\)bits to storenitems from a universeU, matches a lower bound by Demaine et al. that applies to any stable hash table. Iceberg hashing introduces new general-purpose techniques for some of the most basic aspects of hash-table design. Notably, our indirection-free technique for dynamic resizing, which we call waterfall addressing, and our techniques for achieving stability and very-high probability guarantees, can be applied to any hash table that makes use of the front-yard/backyard paradigm for hash table design. 
    more » « less
  3. Finding the connected components of a graph is a fundamental prob- lem with uses throughout computer science and engineering. The task of computing connected components becomes more difficult when graphs are very large, or when they are dynamic, meaning the edge set changes over time subject to a stream of edge inser- tions and deletions. A natural approach to computing the connected components on a large, dynamic graph stream is to buy enough RAM to store the entire graph. However, the requirement that the graph fit in RAM is prohibitive for very large graphs. Thus, there is an unmet need for systems that can process dense dynamic graphs, especially when those graphs are larger than available RAM. We present a new high-performance streaming graph-processing system for computing the connected components of a graph. This system, which we call GraphZeppelin, uses new linear sketching data structures (CubeSketch) to solve the streaming connected components problem and as a result requires space asymptotically smaller than the space required for a lossless representation of the graph. GraphZeppelin is optimized for massive dense graphs: GraphZeppelin can process millions of edge updates (both inser- tions and deletions) per second, even when the underlying graph is far too large to fit in available RAM. As a result GraphZeppelin vastly increases the scale of graphs that can be processed. 
    more » « less