Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Agent-based models (ABMs) are used to simulate human-subject experiments. A comprehensive understanding of these human systems often requires executing large numbers of simulations, but these requirements are constrained by computational and other resources. In this work, we build a framework of digital twins for modeling human-subject experiments. The framework has three modules: ABMs of player behaviors built from game data; extensions of these models to represent virtual assistants (agents that are exogenously manipulated to create controlled environments for human agents); and an uncertainty quantification module composed of functional ANOVA and a Gaussian process-based emulator. The emulator is built from the extended ABM; we focus on emulator validation. By incorporating experimental data and agent-based simulation data, our proposed framework enhances the virtual representation of the dynamics in human-subject word formation experiments, which we consider a digital twin. Networked anagram experiments are used as an exemplar to demonstrate the methods.more » « lessFree, publicly-accessible full text available December 18, 2025
- 
            Researchers have modeled contagion processes on social networks for wide ranging applications, including spreading of epidemics, financial defaults, actions such as joining social media sites, and rumors. So, too, researchers have developed a host of intervention methods to control harmful contagions on networks; among these approaches are node and edge removal, separating network communities, altering contagion properties, and introducing a second competing contagion. In this work, minimum dominating sets are used to identify blocking nodes—nodes that do not contract a contagion and therefore also do not assist in transmitting it. A novel, generalized method that utilizes integer linear programming to determine exact minimum dominating sets (which is an NP-hard problem) has been developed for a subgraph of any social network for any combination of covering distance and coverage requirement. Three social networks are used to understand and evaluate (i) the method itself and (ii) the efficacy of the blocking nodes that the method produces to stop contagion spread.more » « less
- 
            Common knowledge (CK) is a phenomenon where a group of individuals each knows some collection of information, and, in essence, everyone knows that everyone knows the information. There are many applications involving CK, including business decision making, protests and rebellions, and online advertising. CK can lead to contagion and collective action but in ways that are fundamentally different from classic (e.g., Granovetter) threshold models used in the social sciences. Researchers developed CK models to enable the computation of contagion in networked populations. But these models have largely not been investigated using experiments with human subjects. In this work, we conduct a successive analysis of online CK experiments. We devise a flexible and interpretable statistical method to investigate the effects of significant factors, such as network structure and communication type. Among our findings, we demonstrate a phase change in group payout in the games that is caused by prohibiting player communication.more » « less
- 
            In a networked anagram game, players are provided letters with possible actions of requesting letters from their neighbours, replying to letter requests, or forming words. The objective is to form as many words as possible as a team. The experimental data show that behaviours among players can vary significantly. However, simulations using agent-based models (ABM) in the literature often have not incorporated proper uncertainty quantification methods to characterise diverse behaviours of players. In this work, we propose an uncertainty quantification framework to build, exercise, and evaluate agent behaviour models and simulations for networked group anagram games. Specifically, using the data of game experiments, the proposed framework considers the clustering of game players based on their performance to reflect players’ heterogeneity. Moreover, we also quantify uncertainty within each cluster through statistical modelling and inference. Numerical studies of networked game configurations are conducted to demonstrate the merits of the proposed framework.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available