Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We examine a two-dimensional deep-water surface gravity wave packet generated by a pressure disturbance in the Lagrangian reference frame. The pressure disturbance has the form of a narrow-banded weakly nonlinear deep-water wave packet. During forcing, the vorticity equation implies that the momentum resides entirely in the near-surface Lagrangian-mean flow, which in this context is often called the “Stokes drift”. After the forcing turns off, the wave packet propagates away from the forcing region, carrying with it most of the energy imparted by the forcing. These waves together with their induced long wave response have no momentum in a depth integrated sense, in agreement with the classical results of Longuet-Higgins and Stewart (Deep Sea Research and Oceanographic Abstracts 11, 592−562) and McIntyre (Journal of Fluid Mechanics 106, 331−347). The total flow associated with the propagating packet has no net momentum. In contrast with the finite-depth scenario discussed by McIntyre (Journal of Fluid Mechanics 106, 331−347), however, momentum imparted to the fluid during forcing resides in a dipolar structure that persists in the forcing region—rather than being carried away by shallow-water waves. We conclude by examining waves propagating from deep to shallow water and show that wave packets, which initially have no momentum, may have non-zero momentum in finite-depth water through reflected and trapped long waves. This explains how deep water waves acquire momentum as they approach shore. The artificial form of the parameterized forcing from the wind facilitates the thought experiments considered in this paper, as opposed to striving to model more realistic wind forcing scenarios.more » « lessFree, publicly-accessible full text available March 26, 2026
-
The particle trajectories in irrotational, incompressible and inviscid deep-water surface gravity waves are open, leading to a net drift in the direction of wave propagation commonly referred to as the Stokes drift, which is responsible for catalysing surface wave-induced mixing in the ocean and transporting marine debris. A balance between phase-averaged momentum density, kinetic energy density and vorticity for irrotational, monochromatic and spatially periodic two-dimensional water waves is derived by working directly within the Lagrangian reference frame, which tracks particle trajectories as a function of their labels and time. This balance should be expected as all three of these quantities are conserved following particles in this system. Vorticity in particular is always conserved along particles in two-dimensional inviscid flow, and as such even in its absence it is the value of the vorticity that fundamentally sets the drift, which in the Lagrangian frame is identified as the phase-averaged momentum density of the system. A relationship between the drift and the geometric mean water level of particles is found at the surface, which highlights connections between the geometry and dynamics. Finally, an example of an initially quiescent fluid driven by a wavelike pressure disturbance is considered, showing how the net momentum and energy from the surface pressure disturbance transfer to the wave field, and recognizing the source of the mean Lagrangian drift as the net momentum required to generate an irrotational surface wave by any conservative force.more » « less
-
Deep-water surface wave breaking affects the transfer of mass, momentum, energy and heat between the air and sea. Understanding when and how the onset of wave breaking will occur remains a challenge. The mechanisms that form unforced steep waves, i.e. nonlinearity or dispersion, are thought to have a strong influence on the onset of wave breaking. In two dimensions and in deep water, spectral bandwidth is the main factor that affects the roles these mechanism play. Existing studies, in which the relationship between spectral bandwidth and wave breaking onset is investigated, present varied and sometimes conflicting results. We perform potential-flow simulations of two-dimensional focused wave groups on deep water to better understand this relationship, with the aim of reconciling existing studies. We show that the way in which steepness is defined may be the main source of confusion in the literature. Locally defined steepness at breaking onset reduces as a function of bandwidth, and globally defined (spectral) steepness increases. The relationship between global breaking onset steepness and spectral shape (using the parameters bandwidth and spectral skewness) is too complex to parameterise in a general way. However, we find that the local surface slope of maximally steep non-breaking waves, of all spectral bandwidths and shapes that we simulate, approaches a limit of$$1/\tan ({\rm \pi} /3)\approx 0.5774$$. This slope-based threshold is simple to measure and may be used as an alternative to existing kinematic breaking onset thresholds. There is a potential link between slope-based and kinematic breaking onset thresholds, which future work should seek to better understand.more » « less
An official website of the United States government
