skip to main content


Search for: All records

Editors contains: "Bach, Francis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Bach, Francis (Ed.)
    A graph homomorphism is a map between two graphs that preserves adjacency relations. We consider the problem of sampling a random graph homomorphism from a graph into a large network. We propose two complementary MCMC algorithms for sampling random graph homomorphisms and establish bounds on their mixing times and the concentration of their time averages. Based on our sampling algorithms, we propose a novel framework for network data analysis that circumvents some of the drawbacks in methods based on independent and neighborhood sampling. Various time averages of the MCMC trajectory give us various computable observables, including well-known ones such as homomorphism density and average clustering coefficient and their generalizations. Furthermore, we show that these network observables are stable with respect to a suitably renormalized cut dis- tance between networks. We provide various examples and simulations demonstrating our framework through synthetic networks. We also demonstrate the performance of our frame- work on the tasks of network clustering and subgraph classification on the Facebook100 dataset and on Word Adjacency Networks of a set of classic novels. 
    more » « less
  2. Bach, Francis ; Blei, David ; Scholkopf, Bernhard (Ed.)
    This paper investigates the asymptotic behaviors of gradient descent algorithms (particularly accelerated gradient descent and stochastic gradient descent) in the context of stochastic optimization arising in statistics and machine learning, where objective functions are estimated from available data. We show that these algorithms can be computationally modeled by continuous-time ordinary or stochastic differential equations. We establish gradient flow central limit theorems to describe the limiting dynamic behaviors of these computational algorithms and the large-sample performances of the related statistical procedures, as the number of algorithm iterations and data size both go to infinity, where the gradient flow central limit theorems are governed by some linear ordinary or stochastic differential equations, like time-dependent Ornstein-Uhlenbeck processes. We illustrate that our study can provide a novel unified framework for a joint computational and statistical asymptotic analysis, where the computational asymptotic analysis studies the dynamic behaviors of these algorithms with time (or the number of iterations in the algorithms), the statistical asymptotic analysis investigates the large-sample behaviors of the statistical procedures (like estimators and classifiers) that are computed by applying the algorithms; in fact, the statistical procedures are equal to the limits of the random sequences generated from these iterative algorithms, as the number of iterations goes to infinity. The joint analysis results based on the obtained gradient flow central limit theorems lead to the identification of four factors—learning rate, batch size, gradient covariance, and Hessian—to derive new theories regarding the local minima found by stochastic gradient descent for solving non-convex optimization problems. 
    more » « less
  3. Bach, Francis ; Blei, David ; Scholkopf, Bernhard (Ed.)
    This paper investigates the asymptotic behaviors of gradient descent algorithms (particularly accelerated gradient descent and stochastic gradient descent) in the context of stochastic optimization arising in statistics and machine learning, where objective functions are estimated from available data. We show that these algorithms can be computationally modeled by continuous-time ordinary or stochastic differential equations. We establish gradient flow central limit theorems to describe the limiting dynamic behaviors of these computational algorithms and the large-sample performances of the related statistical procedures, as the number of algorithm iterations and data size both go to infinity, where the gradient flow central limit theorems are governed by some linear ordinary or stochastic differential equations, like time-dependent Ornstein-Uhlenbeck processes. We illustrate that our study can provide a novel unified framework for a joint computational and statistical asymptotic analysis, where the computational asymptotic analysis studies the dynamic behaviors of these algorithms with time (or the number of iterations in the algorithms), the statistical asymptotic analysis investigates the large-sample behaviors of the statistical procedures (like estimators and classifiers) that are computed by applying the algorithms; in fact, the statistical procedures are equal to the limits of the random sequences generated from these iterative algorithms, as the number of iterations goes to infinity. The joint analysis results based on the obtained The joint analysis results based on the obtained gradient flow central limit theorems lead to the identification of four factors---learning rate, batch size, gradient covariance, and Hessian---to derive new theories regarding the local minima found by stochastic gradient descent for solving non-convex optimization problems. 
    more » « less