Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)We study fundamental directed graph (digraph) problems in the streaming model. An initial investigation by Chakrabarti, Ghosh, McGregor, and Vorotnikova [SODA'20] on streaming digraphs showed that while most of these problems are provably hard in general, some of them become tractable when restricted to the well-studied class of tournament graphs where every pair of nodes shares exactly one directed edge. Thus, we focus on tournaments and improve the state of the art for multiple problems in terms of both upper and lower bounds. Our primary upper bound is a deterministic single-pass semi-streaming algorithm (using Õ(n) space for n-node graphs, where Õ(.) hides polylog(n) factors) for decomposing a tournament into strongly connected components (SCC). It improves upon the previously best-known algorithm by Baweja, Jia, and Woodruff [ITCS'22] in terms of both space and passes: for p ⩾ 1, they used (p+1) passes and Õ(n^{1+1/p}) space. We further extend our algorithm to digraphs that are close to tournaments and establish tight bounds demonstrating that the problem’s complexity grows smoothly with the "distance" from tournaments. Applying our SCC-decomposition framework, we obtain improved - and in some cases, optimal - tournament algorithms for s,t-reachability, strong connectivity, Hamiltonian paths and cycles, and feedback arc set. On the other hand, we prove lower bounds exhibiting that some well-studied problems - such as (exact) feedback arc set and s,t-distance - remain hard (require Ω(n²) space) on tournaments. Moreover, we generalize the former problem’s lower bound to establish space-approximation tradeoffs: any single-pass (1± ε)-approximation algorithm requires Ω(n/√{ε}) space. Finally, we settle the streaming complexities of two basic digraph problems studied by prior work: acyclicity testing of tournaments and sink finding in DAGs. As a whole, our collection of results contributes significantly to the growing literature on streaming digraphs.more » « less
-
Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)The maximum coverage problem is to select k sets, from a collection of m sets, such that the cardinality of their union, in a universe of size n, is maximized. We consider (1-1/e-ε)-approximation algorithms for this NP-hard problem in three standard data stream models. 1) Dynamic Model. The stream consists of a sequence of sets being inserted and deleted. Our multi-pass algorithm uses ε^{-2} k ⋅ polylog(n,m) space. The best previous result (Assadi and Khanna, SODA 2018) used (n +ε^{-4} k) polylog(n,m) space. While both algorithms use O(ε^{-1} log m) passes, our analysis shows that, when ε ≤ 1/log log m, it is possible to reduce the number of passes by a 1/log log m factor without incurring additional space. 2) Random Order Model. In this model, there are no deletions, and the sets forming the instance are uniformly randomly permuted to form the input stream. We show that a single pass and k polylog(n,m) space suffices for arbitrary small constant ε. The best previous result, by Warneke et al. (ESA 2023), used k² polylog(n,m) space. 3) Insert-Only Model. Lastly, our results, along with numerous previous results, use a sub-sampling technique introduced by McGregor and Vu (ICDT 2017) to sparsify the input instance. We explain how this technique and others used in the paper can be implemented such that the amortized update time of our algorithm is polylogarithmic. This also implies an improvement of the state-of-the-art insert only algorithms in terms of the update time: polylog(m,n) update time suffices, whereas the best previous result by Jaud et al. (SEA 2023) required update time that was linear in k.more » « less
-
Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)We consider two-cost network design models in which edges of the input graph have an associated cost and length. We build upon recent advances in hop-constrained oblivious routing to obtain two sets of results. We address multicommodity buy-at-bulk network design in the nonuniform setting. Existing poly-logarithmic approximations are based on the junction tree approach [Chekuri et al., 2010; Guy Kortsarz and Zeev Nutov, 2011]. We obtain a new polylogarithmic approximation via a natural LP relaxation. This establishes an upper bound on its integrality gap and affirmatively answers an open question raised in [Chekuri et al., 2010]. The rounding is based on recent results in hop-constrained oblivious routing [Ghaffari et al., 2021], and this technique yields a polylogarithmic approximation in more general settings such as set connectivity. Our algorithm for buy-at-bulk network design is based on an LP-based reduction to h-hop constrained network design for which we obtain LP-based bicriteria approximation algorithms. We also consider a fault-tolerant version of h-hop constrained network design where one wants to design a low-cost network to guarantee short paths between a given set of source-sink pairs even when k-1 edges can fail. This model has been considered in network design [Luis Gouveia and Markus Leitner, 2017; Gouveia et al., 2018; Arslan et al., 2020] but no approximation algorithms were known. We obtain polylogarithmic bicriteria approximation algorithms for the single-source setting for any fixed k. We build upon the single-source algorithm and the junction-tree approach to obtain an approximation algorithm for the multicommodity setting when at most one edge can fail.more » « less
-
Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)This paper presents parallel, distributed, and quantum algorithms for single-source shortest paths when edges can have negative integer weights (negative-weight SSSP). We show a framework that reduces negative-weight SSSP in all these settings to n^{o(1)} calls to any SSSP algorithm that works on inputs with non-negative integer edge weights (non-negative-weight SSSP) with a virtual source. More specifically, for a directed graph with m edges, n vertices, undirected hop-diameter D, and polynomially bounded integer edge weights, we show randomized algorithms for negative-weight SSSP with - W_{SSSP}(m,n)n^{o(1)} work and S_{SSSP}(m,n)n^{o(1)} span, given access to a non-negative-weight SSSP algorithm with W_{SSSP}(m,n) work and S_{SSSP}(m,n) span in the parallel model, and - T_{SSSP}(n,D)n^{o(1)} rounds, given access to a non-negative-weight SSSP algorithm that takes T_{SSSP}(n,D) rounds in CONGEST, and - Q_{SSSP}(m,n)n^{o(1)} quantum edge queries, given access to a non-negative-weight SSSP algorithm that takes Q_{SSSP}(m,n) queries in the quantum edge query model. This work builds off the recent result of Bernstein, Nanongkai, Wulff-Nilsen [Bernstein et al., 2022], which gives a near-linear time algorithm for negative-weight SSSP in the sequential setting. Using current state-of-the-art non-negative-weight SSSP algorithms yields randomized algorithms for negative-weight SSSP with - m^{1+o(1)} work and n^{1/2+o(1)} span in the parallel model, and - (n^{2/5}D^{2/5} + √n + D)n^{o(1)} rounds in CONGEST, and - m^{1/2}n^{1/2+o(1)} quantum queries to the adjacency list or n^{1.5+o(1)} quantum queries to the adjacency matrix. Up to a n^{o(1)} factor, the parallel and distributed results match the current best upper bounds for reachability [Jambulapati et al., 2019; Cao et al., 2021]. Consequently, any improvement to negative-weight SSSP in these models beyond the n^{o(1)} factor necessitates an improvement to the current best bounds for reachability. The quantum result matches the lower bound up to an n^{o(1)} factor [Aija Berzina et al., 2004]. Our main technical contribution is an efficient reduction from computing a low-diameter decomposition (LDD) of directed graphs to computations of non-negative-weight SSSP with a virtual source. Efficiently computing an LDD has heretofore only been known for undirected graphs in both the parallel and distributed models, and been rather unstudied in quantum models. The directed LDD is a crucial step of the sequential algorithm in [Bernstein et al., 2022], and we think that its applications to other problems in parallel and distributed models are far from being exhausted. Other ingredients of our results include altering the recursion structure of the scaling algorithm in [Bernstein et al., 2022] to surmount difficulties that arise in these models, and also an efficient reduction from computing strongly connected components to computations of SSSP with a virtual source in CONGEST. The latter result answers a question posed in [Bernstein and Nanongkai, 2019] in the negative.more » « less
-
Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J.; Herman, Grzegorz (Ed.)In this paper, we study efficient parallel edit distance algorithms, both in theory and in practice. Given two strings A[1..n] and B[1..m], and a set of operations allowed to edit the strings, the edit distance between A and B is the minimum number of operations required to transform A into B. In this paper, we use edit distance to refer to the Levenshtein distance, which allows for unit-cost single-character edits (insertions, deletions, substitutions). Sequentially, a standard Dynamic Programming (DP) algorithm solves edit distance with Θ(nm) cost. In many real-world applications, the strings to be compared are similar to each other and have small edit distances. To achieve highly practical implementations, we focus on output-sensitive parallel edit-distance algorithms, i.e., to achieve asymptotically better cost bounds than the standard Θ(nm) algorithm when the edit distance is small. We study four algorithms in the paper, including three algorithms based on Breadth-First Search (BFS), and one algorithm based on Divide-and-Conquer (DaC). Our BFS-based solution is based on the Landau-Vishkin algorithm. We implement three different data structures for the longest common prefix (LCP) queries needed in the algorithm: the classic solution using parallel suffix array, and two hash-based solutions proposed in this paper. Our DaC-based solution is inspired by the output-insensitive solution proposed by Apostolico et al., and we propose a non-trivial adaption to make it output-sensitive. All of the algorithms studied in this paper have good theoretical guarantees, and they achieve different tradeoffs between work (total number of operations), span (longest dependence chain in the computation), and space. We test and compare our algorithms on both synthetic data and real-world data, including DNA sequences, Wikipedia texts, GitHub repositories, etc. Our BFS-based algorithms outperform the existing parallel edit-distance implementation in ParlayLib in all test cases. On cases with fewer than 10⁵ edits, our algorithm can process input sequences of size 10⁹ in about ten seconds, while ParlayLib can only process sequences of sizes up to 10⁶ in the same amount of time. By comparing our algorithms, we also provide a better understanding of the choice of algorithms for different input patterns. We believe that our paper is the first systematic study in the theory and practice of parallel edit distance.more » « less
-
Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J; Herman, Grzegorz (Ed.)We consider variants of the classic Multiway Cut problem. Multiway Cut asks to partition a graph G into k parts so as to separate k given terminals. Recently, Chandrasekaran and Wang (ESA 2021) introduced l_p-norm Multiway Cut, a generalization of the problem, in which the goal is to minimize the l_p norm of the edge boundaries of k parts. We provide an O(log^{1/2} n log^{1/2 + 1/p} k) approximation algorithm for this problem, improving upon the approximation guarantee of O(log^{3/2} n log^{1/2} k) due to Chandrasekaran and Wang. We also introduce and study Norm Multiway Cut, a further generalization of Multiway Cut. We assume that we are given access to an oracle, which answers certain queries about the norm. We present an O(log^{1/2} n log^{7/2} k) approximation algorithm with a weaker oracle and an O(log^{1/2} n log^{5/2} k) approximation algorithm with a stronger oracle. Additionally, we show that without any oracle access, there is no n^{1/4-ε} approximation algorithm for every ε > 0 assuming the Hypergraph Dense-vs-Random Conjecture.more » « less
-
Gørtz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J.; Herman, Grzegorz (Ed.)We present efficient algorithms for solving systems of linear equations in 1-Laplacians of well-shaped simplicial complexes. 1-Laplacians, or higher-dimensional Laplacians, generalize graph Laplacians to higher-dimensional simplicial complexes and play a key role in computational topology and topological data analysis. Previously, nearly-linear time solvers were developed for simplicial complexes with known collapsing sequences and bounded Betti numbers, such as those triangulating a three-ball in ℝ³ (Cohen, Fasy, Miller, Nayyeri, Peng, and Walkington [SODA'2014], Black, Maxwell, Nayyeri, and Winkelman [SODA'2022], Black and Nayyeri [ICALP'2022]). Furthermore, Nested Dissection provides quadratic time solvers for more general systems with nonzero structures representing well-shaped simplicial complexes embedded in ℝ³. We generalize the specialized solvers for 1-Laplacians to simplicial complexes with additional geometric structures but without collapsing sequences and bounded Betti numbers, and we improve the runtime of Nested Dissection. We focus on simplicial complexes that meet two conditions: (1) each individual simplex has a bounded aspect ratio, and (2) they can be divided into "disjoint" and balanced regions with well-shaped interiors and boundaries. Our solvers draw inspiration from the Incomplete Nested Dissection for stiffness matrices of well-shaped trusses (Kyng, Peng, Schwieterman, and Zhang [STOC'2018]).more » « less
-
Gortz, Inge Li; Farach-Colton, Martin; Puglisi, Simon J.; Herman, Grzegorz (Ed.)Computing the diameter of a graph, i.e. the largest distance, is a fundamental problem that is central in fine-grained complexity. In undirected graphs, the Strong Exponential Time Hypothesis (SETH) yields a lower bound on the time vs. approximation trade-off that is quite close to the upper bounds. In directed graphs, however, where only some of the upper bounds apply, much larger gaps remain. Since d(u,v) may not be the same as d(v,u), there are multiple ways to define the problem, the two most natural being the (one-way) diameter (max_(u,v) d(u,v)) and the roundtrip diameter (max_{u,v} d(u,v)+d(v,u)). In this paper we make progress on the outstanding open question for each of them. - We design the first algorithm for diameter in sparse directed graphs to achieve n^{1.5-ε} time with an approximation factor better than 2. The new upper bound trade-off makes the directed case appear more similar to the undirected case. Notably, this is the first algorithm for diameter in sparse graphs that benefits from fast matrix multiplication. - We design new hardness reductions separating roundtrip diameter from directed and undirected diameter. In particular, a 1.5-approximation in subquadratic time would refute the All-Nodes k-Cycle hypothesis, and any (2-ε)-approximation would imply a breakthrough algorithm for approximate 𝓁_∞-Closest-Pair. Notably, these are the first conditional lower bounds for diameter that are not based on SETH.more » « less
-
Mutzel, Petra; Pagh, Rasmus; Herman, Grzegorz (Ed.)
-
Mutzel, Petra; Pagh, Rasmus; Herman, Grzegorz (Ed.)