skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, January 16 until 2:00 AM ET on Friday, January 17 due to maintenance. We apologize for the inconvenience.


Search for: All records

Editors contains: "Mulzer, Wolfgang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    A Reeb graph is a graphical representation of a scalar function on a topological space that encodes the topology of the level sets. A Reeb space is a generalization of the Reeb graph to a multiparameter function. In this paper, we propose novel constructions of Reeb graphs and Reeb spaces that incorporate the use of a measure. Specifically, we introduce measure-theoretic Reeb graphs and Reeb spaces when the domain or the range is modeled as a metric measure space (i.e., a metric space equipped with a measure). Our main goal is to enhance the robustness of the Reeb graph and Reeb space in representing the topological features of a scalar field while accounting for the distribution of the measure. We first introduce a Reeb graph with local smoothing and prove its stability with respect to the interleaving distance. We then prove the stability of a Reeb graph of a metric measure space with respect to the measure, defined using the distance to a measure or the kernel distance to a measure, respectively. 
    more » « less
    Free, publicly-accessible full text available June 6, 2025
  2. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    We consider two restricted cases of the planar dynamic convex hull problem with point insertions and deletions. We assume all updates are performed on a deque (double-ended queue) of points. The first case considers the monotonic path case, where all points are sorted in a given direction, say horizontally left-to-right, and only the leftmost and rightmost points can be inserted and deleted. The second case, which is more general, assumes that the points in the deque constitute a simple path. For both cases, we present solutions supporting deque insertions and deletions in worst-case constant time and standard queries on the convex hull of the points in O(log n) time, where n is the number of points in the current point set. The convex hull of the current point set can be reported in O(h+log n) time, where h is the number of edges of the convex hull. For the 1-sided monotone path case, where updates are only allowed on one side, the reporting time can be reduced to O(h), and queries on the convex hull are supported in O(log h) time. All our time bounds are worst case. In addition, we prove lower bounds that match these time bounds, and thus our results are optimal. 
    more » « less
    Free, publicly-accessible full text available June 6, 2025
  3. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    We study a fundamental problem in Computational Geometry, the planar two-center problem. In this problem, the input is a set S of n points in the plane and the goal is to find two smallest congruent disks whose union contains all points of S. A longstanding open problem has been to obtain an O(nlog n)-time algorithm for planar two-center, matching the Ω(nlog n) lower bound given by Eppstein [SODA'97]. Towards this, researchers have made a lot of efforts over decades. The previous best algorithm, given by Wang [SoCG'20], solves the problem in O(nlog² n) time. In this paper, we present an O(nlog n)-time (deterministic) algorithm for planar two-center, which completely resolves this open problem. 
    more » « less
    Free, publicly-accessible full text available June 6, 2025
  4. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    Given in the plane a set of points and a set of halfplanes, we consider the problem of computing a smallest subset of halfplanes whose union covers all points. In this paper, we present an O(n^{4/3}log^{5/3}nlog^{O(1)}log n)-time algorithm for the problem, where n is the total number of all points and halfplanes. This improves the previously best algorithm of n^{10/3}2^{O(log^*n)} time by roughly a quadratic factor. For the special case where all halfplanes are lower ones, our algorithm runs in O(nlog n) time, which improves the previously best algorithm of n^{4/3}2^{O(log^*n)} time and matches an Ω(nlog n) lower bound. Further, our techniques can be extended to solve a star-shaped polygon coverage problem in O(nlog n) time, which in turn leads to an O(nlog n)-time algorithm for computing an instance-optimal ε-kernel of a set of n points in the plane. Agarwal and Har-Peled presented an O(nklog n)-time algorithm for this problem in SoCG 2023, where k is the size of the ε-kernel; they also raised an open question whether the problem can be solved in O(nlog n) time. Our result thus answers the open question affirmatively. 
    more » « less
    Free, publicly-accessible full text available June 6, 2025
  5. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    We define and investigate the Fréchet edit distance problem. Given two polygonal curves π and σ and a non-negative threshhold value δ, we seek the minimum number of edits to σ such that the Fréchet distance between the edited σ and π is at most δ. For the edit operations we consider three cases, namely, deletion of vertices, insertion of vertices, or both. For this basic problem we consider a number of variants. Specifically, we provide polynomial time algorithms for both discrete and continuous Fréchet edit distance variants, as well as hardness results for weak Fréchet edit distance variants. 
    more » « less
    Free, publicly-accessible full text available June 6, 2025
  6. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    We extend the persistence algorithm, viewed as an algorithm computing the homology of a complex of free persistence or graded modules, to complexes of modules that are not free. We replace persistence modules by their presentations and develop an efficient algorithm to compute the homology of a complex of presentations. To deal with inputs that are not given in terms of presentations, we give an efficient algorithm to compute a presentation of a morphism of persistence modules. This allows us to compute persistent (co)homology of instances giving rise to complexes of non-free modules. Our methods lead to a new efficient algorithm for computing the persistent homology of simplicial towers and they enable efficient algorithms to compute the persistent homology of cosheaves over simplicial towers and cohomology of persistent sheaves on simplicial complexes. We also show that we can compute the cohomology of persistent sheaves over arbitrary finite posets by reducing the computation to a computation over simplicial complexes. 
    more » « less
  7. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    We prove a far-reaching strengthening of Szemerédi’s regularity lemma for intersection graphs of pseudo-segments. It shows that the vertex set of such graphs can be partitioned into a bounded number of parts of roughly the same size such that almost all of the bipartite graphs between pairs of parts are complete or empty. We use this to get an improved bound on disjoint edges in simple topological graphs, showing that every n-vertex simple topological graph with no k pairwise disjoint edges has at most n(log n)^O(log k) edges. 
    more » « less
  8. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    Metric spaces (X, d) are ubiquitous objects in mathematics and computer science that allow for capturing pairwise distance relationships d(x, y) between points x, y ∈ X. Because of this, it is natural to ask what useful generalizations there are of metric spaces for capturing "k-wise distance relationships" d(x_1, …, x_k) among points x_1, …, x_k ∈ X for k > 2. To that end, Gähler (Math. Nachr., 1963) (and perhaps others even earlier) defined k-metric spaces, which generalize metric spaces, and most notably generalize the triangle inequality d(x₁, x₂) ≤ d(x₁, y) + d(y, x₂) to the "simplex inequality" d(x_1, …, x_k) ≤ ∑_{i=1}^k d(x_1, …, x_{i-1}, y, x_{i+1}, …, x_k). (The definition holds for any fixed k ≥ 2, and a 2-metric space is just a (standard) metric space.) In this work, we introduce strong k-metric spaces, k-metric spaces that satisfy a topological condition stronger than the simplex inequality, which makes them "behave nicely." We also introduce coboundary k-metrics, which generalize 𝓁_p metrics (and in fact all finite metric spaces induced by norms) and minimum bounding chain k-metrics, which generalize shortest path metrics (and capture all strong k-metrics). Using these definitions, we prove analogs of a number of fundamental results about embedding finite metric spaces including Fréchet embedding (isometric embedding into 𝓁_∞) and isometric embedding of all tree metrics into 𝓁₁. We also study relationships between families of (strong) k-metrics, and show that natural quantities, like simplex volume, are strong k-metrics. 
    more » « less
  9. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    We propose precise notions of what it means to guard a domain "robustly", under a variety of models. While approximation algorithms for minimizing the number of (precise) point guards in a polygon is a notoriously challenging area of investigation, we show that imposing various degrees of robustness on the notion of visibility coverage leads to a more tractable (and realistic) problem for which we can provide approximation algorithms with constant factor guarantees. 
    more » « less
  10. Mulzer, Wolfgang ; Phillips, Jeff M (Ed.)
    A fundamental question is whether one can maintain a maximum independent set (MIS) in polylogarithmic update time for a dynamic collection of geometric objects in Euclidean space. For a set of intervals, it is known that no dynamic algorithm can maintain an exact MIS in sublinear update time. Therefore, the typical objective is to explore the trade-off between update time and solution size. Substantial efforts have been made in recent years to understand this question for various families of geometric objects, such as intervals, hypercubes, hyperrectangles, and fat objects. We present the first fully dynamic approximation algorithm for disks of arbitrary radii in the plane that maintains a constant-factor approximate MIS in polylogarithmic expected amortized update time. Moreover, for a fully dynamic set of n unit disks in the plane, we show that a 12-approximate MIS can be maintained with worst-case update time O(log n), and optimal output-sensitive reporting. This result generalizes to fat objects of comparable sizes in any fixed dimension d, where the approximation ratio depends on the dimension and the fatness parameter. Further, we note that, even for a dynamic set of disks of unit radius in the plane, it is impossible to maintain O(1+ε)-approximate MIS in truly sublinear update time, under standard complexity assumptions. Our results build on two recent technical tools: (i) The MIX algorithm by Cardinal et al. (ESA 2021) that can smoothly transition from one independent set to another; hence it suffices to maintain a family of independent sets where the largest one is an O(1)-approximate MIS. (ii) A dynamic nearest/farthest neighbor data structure for disks by Kaplan et al. (DCG 2020) and Liu (SICOMP 2022), which generalizes the dynamic convex hull data structure by Chan (JACM 2010), and quickly yields a "replacement" disk (if any) when a disk in one of our independent sets is deleted. 
    more » « less