Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ryan, Q; Pawl, A; Zwolak, JP (Ed.)By taking a responsive approach to the design and enactment of teacher professional development (PD), PD instruction can be tailored to teachers’ needs, interests, and concerns. This is of considerable importance in the high school physics teacher PD space, wherein teacher needs turn out to be particularly complex and diverse due to differences in teacher preparation within the discipline. More generally, understanding the degree to which PD programs are responsive to their teachers’ needs can support increased responsiveness. To this end, having a validated survey can assist in measuring the criteria for this responsiveness. This study presents the initial development of a responsive professional development (RPD) survey based on interviews with 13 high school physics teachers. Nine responsive codes were identified through thematic analysis of teacher interviews, and the resulting survey has been administered to 33 teachers for piloting purposes. In this work, the initial survey development process is presented.more » « less
-
Jones, D; Ryan, Q; Pawl, A (Ed.)An understanding of vectors and vector operations is crucial for success in physics, as this serves as the foundation for various essential concepts, including motion and forces. Previous research indicates that only a fraction of introductory physics students have a usable knowledge of vectors and vector operations, and that more attention should be given to how students make sense of vectors. We examined classroom video data from an introductory physics course wherein students worked collaboratively through learning activities to introduce vectors and vector operations. During these activities, students’ employment of gesture as a representational mode facilitated group sense-making. We propose a preliminary taxonomy of gestures for representing vector magnitudes, directions, and initial and terminal points. By identifying and characterizing the gestures used by students, we can gain insights into their learning processes and conceptual understanding of vectors, which can inform instructional design and teaching practices.more » « less
-
Jones, D.; Ryan, Q.; Pawl, A. (Ed.)Data modeling and graphing skill sets are foundational to science learning and careers, yet students regularly struggle to master these basic competencies. Further, although educational researchers have uncovered numerous approaches to support sense-making with mathematical models of motion, teachers sometimes struggle to enact them due to a variety of reasons, including limited time and materials for lab-based teaching opportunities and a lack of awareness of student learning difficulties. In this paper, we introduce a free smartphone application that uses LiDAR data to support motion-based physics learning with an emphasis on graphing and mathematical modeling. We tested the embodied technology, called LiDAR Motion, with 106 students in a non-major, undergraduate physics classroom at a mid-sized, private university on the U.S. East Coast. In identical learning assessments issued both before and after the study, students working with LiDAR Motion improved their scores by a more significant margin than those using standard issue sonic rangers. Further, per a voluntary survey, students who used both technologies expressed a preference for LiDAR Motion. This mobile application holds potential for improving student learning in the classroom, at home, and in alternative learning environments.more » « less
-
Frank, B.; Jones, D.; Ryan, Q. (Ed.)A framework of cyclic observation and triangulation was applied over a period of 4 years to graduate student difficulties related to quantum spin, in which numerous in-class observations and interviews were used to identify common, persistent difficulties. Written items were iteratively developed over two years to add a quantitative component. Items were administered to graduate students at two collaborating institutions, over three years. We find that students generally obtained scores or correct proportions ranging from 30%-70% on the written items, and answering patterns were similar across all institutions. All items were identified by the course instructors as being relevant to instructional goals of the course. We report on a number of graduate student difficulties with spin, including orthogonality of spin-1/2 states, projections of spin states, spin addition, and exchange symmetry. We briefly discuss possible theoretical frameworks through which to interpret these results. 2022more » « less
-
Frank, B.; Jones, D.; Ryan, Q. (Ed.)In this study, we showcase the various ways high school physics teachers make connections between science content and social justice, pushing the boundary of what is counted as science content by bringing social justice engagement to the center of science learning. We analyze lessons submitted by eighteen high school physics teachers who participated in a professional development program that supported the integration of equity into their science teaching. Three themes represent teachers' approach toward integrating social justice in their science lessons: (1) investigating the nature of science in specific science concepts and re-evaluating/redefining science concepts, (2) connecting students' everyday activities with science and global social justice issues, and (3) using science knowledge to engage with and advocate for social justice issues in students' local communities.more » « less
-
Frank, B; Jones, D; Ryan, Q (Ed.)
-
Frank, B. W.; Jones D. L.; Ryan, Q. X. (Ed.)
-
Frank, B. W.; Jones, D. L.; and Ryan, Q. X. (Ed.)In this paper, we analyze video recordings of students working on tutorials in Zoom breakout rooms in an upper-division quantum mechanics course. We investigate group behaviors in this virtual environment, including the effects of instructor presence. To this end, we modify the Color Frames coding scheme introduced by Scherr to suit the virtual nature of the interactions. By broadening the frames and allowing for multiple overlapping frames, we are able to describe some group behaviors not otherwise captured. For example, in some instances, students take on an authoritative role in the group, and in other instances, groups engage in overtly casual behavior while nonetheless having on-topic discussions. We observe significant variation in how much time each group spends in each frame, but find that all groups spend some time in all frames. Instructors can be present without dominating or eliminating discussion between students, and their presence need not significantly impact the time students spent in an "informal/friendly'' frame. However, instructor presence significantly reduces time spent working individually. Our findings will support additional research into the dynamics of student discussions during tutorials and aid ongoing development of online tutorials that can, e.g., be assigned for use outside of class.more » « less
-
Frank, B. W.; Jones, D. L.; and Ryan, Q. X. (Ed.)Significant attention in the PER community has been paid to student cognition and reasoning processes in undergraduate quantum mechanics. Until recently, however, these same topics have remained largely unexplored in the context of emerging interdisciplinary quantum information science (QIS) courses. We conducted exploratory interviews with 22 students in an upper-division quantum computing course at a large R1 university crosslisted in physics and computer science, as well as 6 graduate students in a similar graduate-level QIS course offered in physics. We classify and analyze students' responses to a pair of questions regarding the fundamental differences between classical and quantum computers. We specifically note two key themes of importance to educators: (1) when reasoning about computational power, students often struggled to distinguish between the relative effects of exponential and linear scaling, resulting in students frequently focusing on distinctions that are arguably better understood as analog-digital than classical-quantum, and (2) introducing the thought experiment of analog classical computers was a powerful tool for helping students develop a more expertlike perspective on the differences between classical and quantum computers.more » « less
An official website of the United States government

Full Text Available