skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Schreiber, Laura"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    We present evaluations of the Keck Telescope’s adaptive optics (AO) performance on Milky Way Galactic center imaging and spectroscopic observations using three different AO setups: laser guide star with infrared (IR) tip-tilt correction, laser guide star with visible tip-tilt correction, and infrared natural guide star with a pyramid wavefront sensor. Observations of the Galactic Center can utilize a bright IR tip-tilt star (K′ = 7.4 mag) for corrections, which is over 10 arcseconds closer than the optical tip-tilt star. The proximity of this IR star enables the comparison of the aforementioned AO configurations. We present performance metrics such as full-width-at-half-maximum (FWHM), Strehl ratio, and spectral signal to noise ratio and their relations to atmospheric seeing conditions. The IR tip-tilt star decreases the median spatial FWHM by 31% in imaging data and 30% in spectroscopy. Median Strehl for imaging data improves by 24%. Additionally, the IR star removes the seeing dependence from differential tip-tilt error in both imaging and spectroscopic data. This evaluation provides important work for ongoing upgrades to AO systems, such as the Keck All sky Precision Adaptive Optics (KAPA) upgrade on the Keck I Telescope, and the development of new AO systems for extremely large telescopes. 
    more » « less
  2. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    A focal plane wavefront sensor offers major advantages to adaptive optics, including removal of non-commonpath error and providing sensitivity to blind modes (such as petalling). But simply using the observed point spread function (PSF) is not sufficient for wavefront correction, as only the intensity, not phase, is measured. Here we demonstrate the use of a multimode fiber mode converter (photonic lantern) to directly measure the wavefront phase and amplitude at the focal plane. Starlight is injected into a multimode fiber at the image plane, with the combination of modes excited within the fiber a function of the phase and amplitude of the incident wavefront. The fiber undergoes an adiabatic transition into a set of multiple, single-mode outputs, such that the distribution of intensities between them encodes the incident wavefront. The mapping (which may be strongly non-linear) between spatial modes in the PSF and the outputs is stable but must be learned. This is done by a deep neural network, trained by applying random combinations of spatial modes to the deformable mirror. Once trained, the neural network can instantaneously predict the incident wavefront for any set of output intensities. We demonstrate the successful reconstruction of wavefronts produced in the laboratory with low-wind-effect, and an on-sky demonstration of reconstruction of low-order modes consistent with those measured by the existing pyramid wavefront sensor, using SCExAO observations at the Subaru Telescope. 
    more » « less
  3. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    The MMT Adaptive optics exoPlanet characterization System (MAPS) is an exoplanet characterization program that encompasses instrument development, observational science, and education. The instrument we are developing for the 6.5m MMT observatory is multi-faceted, including a refurbished 336-actuator adaptive secondary mirror (ASM); two pyramid wavefront sensors (PyWFS's); a 1-kHz adaptive optics (AO) control loop; a high-resolution and long-wavelength upgrade to the Arizona infraRed Imager and Echelle Spectrograph (ARIES); and a new-AO-optimized upgrade to the MMT-sensitive polarimeter (MMT-Pol). With the completed MAPS instrument, we will execute a 60-night science program to characterize the atmospheric composition and dynamics of ~50-100 planets around other stars. The project is approaching first light, anticipated for Summer/Fall of 2022. With the electrical and optical tests complete and passing the review milestone for the ASM's development, it is currently being tuned. The PyWFS's are being built and integrated in their respective labs: the visible-light PyWFS at the University of Arizona (UA), and the infrared PyWFS at the University of Toronto (UT). The top-level AO control software is being developed at UA, with an on-sky calibration algorithm being developed at UT. ARIES development continues at UA, and MMT-Pol development is at the University of Minnesota. The science and education programs are in planning and preparation. We will present the design and development of the entire MAPS instrument and project, including an overview of lab results and next steps. 
    more » « less
  4. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    An adaptive secondary mirror (ASM) with novel actuator technology is being designed and built for the UH88 telescope as a demonstration of a new generation of ASMs that might be deployed at ground based observatories such as Keck, Subaru, and TMT. Before putting the ASM on the telescope, a set of calibrations and character- izations need to be made in the lab. The crucial lab characterizations of the ASM are to measure its influence functions, and its surface shape when powered and unpowered. To measure these, we develop a novel and inexpensive optical metrology approach using phase measuring deflectometry. This paper describes the simulations we wrote to model the deflectometry method, our data acquisition/analysis pipeline, and a lab prototype sys- tem we built that demonstrates its feasibility on a microelectromechanical systems (MEMS) deformable mirror. Based on the information gained through the deflectometry simulation and the setup prototype, we conclude that phase measuring deflectometry is a reasonable method for obtaining the influence functions but that the absolute surface shape of the ASM will be limited by our knowledge of the placement of components within the deflectometry setup itself. We discuss challenges with extending this approach to larger convex adaptive secondary mirrors. 
    more » « less
  5. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    We report on progress at the University of Hawaii on the integration and testing setups for the adaptive secondary mirror (ASM) for the University of Hawaii 2.2-meter telescope on Maunakea, Hawaii. We report on the development of the handling fixtures and alignment tools we will use along with progress on the optical metrology tools we will use for the lab and on-sky testing of the system. 
    more » « less
  6. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    Early adaptive optics (AO) systems were designed with knowledge of a site’s distribution of Fried parameter (r0) and Greenwood time delay (τ0) values. Recent systems have leveraged additional knowledge of the distribution of turbulence with altitude. We present measurements of the atmosphere above Maunakea, Hawaii and how the temporal properties of the turbulence relate to tomographic reconstructions. We combine archival telemetry collected by ‘imaka—a ground layer AO (GLAO) system on the UH88” telescope—with data from the local weather towers, weather forecasting models, and weather balloon launches, to study how frequently one can map a turbulent layer’s wind vector to its altitude. Finally, we present the initial results of designing a new GLAO control system based off of these results, an approach we have named “temporal tomography.” 
    more » « less
  7. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    The MMTO Adaptive optics exoPlanet characterization System (MAPS) is an ongoing upgrade to the 6.5-meter MMT Observatory on Mount Hopkins in Arizona. MAPS includes an upgraded adaptive secondary mirror (ASM), upgrades to the ARIES spectrograph, and a new AO system containing both an optical and near-infrared (NIR; 0.9-1.8 μm) pyramid wavefront sensor (PyWFS). The NIR PyWFS will utilize an IR-optimized double pyramid coupled with a SAPHIRA detector: a low-read noise electron Avalanche Photodiode (eAPD) array. This NIR PyWFS will improve MAPS's sky coverage by an order of magnitude by allowing redder guide stars (e.g. K & M-dwarfs or highly obscured stars in the Galactic plane) to be used. To date, the custom designed cryogenic SAPHIRA camera has been fully characterized and can reach sub-electron read noise at high avalanche gain. In order to test the performance of the camera in a closed-loop environment prior to delivery to the observatory, an AO testbed was designed and constructed. In addition to testing the SAPHIRA's performance, the testbed will be used to test and further develop the proposed on-sky calibration procedure for MMTO's ASM. We will report on the anticipated performance improvements from our NIR PyWFS, the SAPHIRA's closed-loop performance on our testbed, and the status of our ASM calibration procedure. 
    more » « less
  8. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    Adaptive Optics (AO) used in ground based observatories can be strengthened in both design and algorithms by a more detailed understanding of the atmosphere they seek to correct. Nowhere is this more true than on Maunakea, where a clearer profile of the atmosphere informs AO system development from the small separations of Extreme AO (ExAO) to the wide field Ground Layer AO (GLAO). Employing telemetry obtained from the ımaka GLAO demonstrator on the University of Hawaii 2.2-meter telescope, we apply a wind profiling method that identifies turbulent layer velocities through spatial-temporal cross correlations of multiple wavefront sensors (WFSs). We compare the derived layer velocities with nearby wind anemometer data and meteorological model predictions of the upper wind speeds and discuss similarities and differences. The strengths and limitations of this profiling method are evaluated through successful recovery of injected, simulated layers into real telemetry. We detail the profilers’ results, including the percentage of data with viable estimates, on four characteristic ımaka observing runs on open loop telemetry throughout both winter and summer targets. We report on how similar layers are to external measures, the confidence of these results, and the potential for future use of this technique on other multi conjugate AO systems. 
    more » « less
  9. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)
    We calculate an optical distortion solution for the OSIRIS Imager on the Keck I telescope, by matching observations of globular clusters to a Hubble reference catalogue. This solution can be applied to correct astrometric distortions in OSIRIS frames, improving the astrometric accuracy of observations. We model the distortion with a 5th order Legendre polynomial. The distortion we find matches the expected OSIRIS distortion, and has a fit error of 0.6 mas, but has large residuals of 7 mas. We are currently iterating on an improved reference frame to improve the residual. Additionally, we have installed the Precision Calibration Unit (PCU) on the Keck I optical bench, which will generates an artificial grid of stars for use in future distortion calculations. 
    more » « less
  10. Schmidt, Dirk; Schreiber, Laura; Vernet, Elise (Ed.)