Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Yang, Chaowei (Ed.)The COVID-19 pandemic has profoundly impacted the economy and human lives worldwide, particularly the vulnerable low-income population. We employ a large panel data of 5.6 million daily transactions from 2.6 million debit cards owned by the low-income population in the U.S. to quantify the joint impacts of the state lockdowns and stimulus payments on this population’s spending along the inter-temporal, geo-spatial, and cross-categorical dimensions. Leveraging the difference-in-differences analyses at the per card and zip code levels, we uncover three key findings. (1) Inter-temporally, the state lockdowns diminished the daily average spending relative to the same period in 2019 by $3.9 per card and $2,214 per zip code, whereas the stimulus payments elevated the daily average spending by $15.7 per card and $3,307 per zip code. (2) Spatial heterogeneity prevailed: Democratic zip codes displayed much more volatile dynamics, with an initial decline three times that of Republican zip codes, followed by a higher rebound and a net gain after the stimulus payments; also, Southwest exhibited the highest initial decline whereas Southeast had the largest net gain after the stimulus payments. (3) Across 26 categories, the stimulus payments promoted spending in those categories that enhanced public health and charitable donations, reduced food insecurity and digital divide, while having also stimulated non-essential and even undesirable categories, such as liquor and cigar. In addition, spatial association analysis was employed to identify spatial dependency and local hot spots of spending changes at the county level. Overall, these analyses reveal the imperative need for more geo- and category-targeted stimulus programs, as well as more effective and strategic policy communications, to protect and promote the well-being of the low-income population during public health and economic crises.more » « less
-
Yang, Chaowei (Ed.)In response to the soaring needs of human mobility data, especially during disaster events such as the COVID-19 pandemic, and the associated big data challenges, we develop a scalable online platform for extracting, analyzing, and sharing multi-source multi-scale human mobility flows. Within the platform, an origin-destination-time (ODT) data model is proposed to work with scalable query engines to handle heterogenous mobility data in large volumes with extensive spatial coverage, which allows for efficient extraction, query, and aggregation of billion-level origin-destination (OD) flows in parallel at the server-side. An interactive spatial web portal, ODT Flow Explorer, is developed to allow users to explore multi-source mobility datasets with user-defined spatiotemporal scales. To promote reproducibility and replicability, we further develop ODT Flow REST APIs that provide researchers with the flexibility to access the data programmatically via workflows, codes, and programs. Demonstrations are provided to illustrate the potential of the APIs integrating with scientific workflows and with the Jupyter Notebook environment. We believe the platform coupled with the derived multi-scale mobility data can assist human mobility monitoring and analysis during disaster events such as the ongoing COVID-19 pandemic and benefit both scientific communities and the general public in understanding human mobility dynamics.more » « less
An official website of the United States government
