skip to main content


Title: Monoaryloxide Pyrrolide (MAP) Imido Alkylidene Complexes of Molybdenum and Tungsten That Contain 2,6-Bis(2,5-R 2 -pyrrolyl) phenoxide (R = i-Pr, Ph) Ligands and an Unsubstituted Metallacyclobutane on Its Way to Losing Ethylene
NSF-PAR ID:
10000210
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Chemical Society
Date Published:
Journal Name:
Organometallics
Volume:
32
Issue:
9
ISSN:
0276-7333
Page Range / eLocation ID:
2489 to 2492
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. Combining experimental and theoretical studies, we investigate the role of R-site (R = Y, Sm, Bi) element on the phase formation and thermal stability of R 2 (Mn 1−x Fe x ) 4 O 10−δ ( x = 0, 0.5, 1) mullite-type oxides. Our results show a distinct R-site dependent phase behavior for mullite-type oxides as Fe is substituted for Mn: 100% mullite-type phase was formed in (Y, Sm, Bi) 2 Mn 4 O 10 ; 55% and 18% of (Y, Sm) 2 Mn 2 Fe 2 O 10−δ was found when R = Y and Sm, respectively, for equal Fe and Mn molar concentrations in the reactants, whereas Bi formed 54% O10- and 42% O9-mixed mullite-type phases. Furthermore, when the reactants contain 100% Fe, no mullite-type phase was formed for R = Y and Sm, but a sub-group transition to Bi 2 Fe 4 O 9 O9-phase was found for R = Bi. Thermogravimetric analysis and density functional theory (DFT) calculation results show a decreasing thermal stability in O10-type structure with increasing Fe incorporation; for example, the decomposition temperature is 1142 K for Bi 2 Mn 2 Fe 2 O 10−δ vs. 1217 K for Bi 2 Mn 4 O 10 . On the other hand, Bi 2 Fe 4 O 9 O9-type structure is found to be thermally stable up to 1227 K. These findings are explained by electronic structure calculations: (1) as Fe concentration increases, Jahn–Teller distortion results in mid band-gap empty states from unstable Fe 4+ occupied octahedra, which is responsible for the decrease in O10 structure stability; (2) the directional sp orbital hybridization unique to Bi effectively stabilizes the mullite-type structure as Fe replaces Mn. 
    more » « less
  3. The effects of dispersion on migratory insertion reactions and related iron–carbon bond dissociation energies pertaining to (Me 2 IPr)FeR 2 (R = neo Pe, 1-nor), and the conversion of (Me 2 IPr)Fe(NAd)R 2 to (Me 2 IPr)Fe{N(Ad}R)R are investigated via calculations and structural comparisons. Dispersion appears to be an underappreciated, major contributor to common structure and reactivity relationships. 
    more » « less