The scale-dependent transport of Saharan dust aerosols by African easterly waves (AEWs) is examined analytically and numerically. The analytical analysis shows that the meridional and vertical wave transports of dust are modulated by the Doppler-shifted frequency, ωd, and the wave growth rate, ωi, both of which are functions of the zonal wave scale. The analytical analysis predicts that the AEW dust transports, which are driven by the Reynolds stresses acting on the mean dust gradients, are largest for the twin limits: ωd→0, which corresponds to flow near a critical surface, a local effect; and ωi→0, which corresponds to the slowest growing waves, a global effect. The numerical analysis is carried out with the Weather Research and Forecasting (WRF) model, which is radiatively coupled to the dust field. The model simulations are based on an AEW spectrum consistent with observations. The simulations agree with the theoretical predictions: the slowest growing waves have the strongest transports, which are as much as ~40% larger than the transports of the fastest growing wave. Although the transports are highly scale-dependent, largely due to the scale dependence of ωi, the location of the critical surface and thus the location of the maximum dust transports are not.
more »
« less
Saharan Dust and the Nonlinear Evolution of the African Easterly Jet–African Easterly Wave System
- Award ID(s):
- 1524767
- PAR ID:
- 10021662
- Publisher / Repository:
- DOI PREFIX: 10.1175
- Date Published:
- Journal Name:
- Journal of the Atmospheric Sciences
- Volume:
- 74
- Issue:
- 1
- ISSN:
- 0022-4928
- Page Range / eLocation ID:
- 27 to 47
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract It is well known that African easterly waves (AEWs) can develop into tropical cyclones. However, the processes leading to development are not well understood. To this end, we examine a 38-yr climatology of AEW tracks sorted into developing AEWs (DAEWs) and strong nondeveloping AEWs (SNDAEWs). Wave-centered composites for tracks in the eastern Atlantic (40°–10°W, 5°S–30°N) and West African monsoon regions (10°W–20°E, 5°S–30°N) reveal that DAEWs occur over a more humid background state in both regions. The more humid environment causes DAEWs to exhibit heavier precipitation and wave amplification via vortex stretching. Examination of the column moist static energy (MSE) budget reveals that DAEWs exhibit stronger radiative heating and more moistening via horizontal MSE advection than SNDAEWs. The stronger horizontal MSE advection in DAEWs is due to a northeast shift in the maximum MSE relative to the wave axis, causing the northerlies in the wave to advect a higher MSE into the maximum precipitation. In contrast, MSE is maximum near the center of NDAEWs, making the moistening of the rainfall by horizontal MSE advection weaker. DAEWs exhibit stronger radiative heating per unit of rainfall relative to NDAEWs, suggesting that cloud-radiative feedbacks are stronger in these systems. The sum of horizontal MSE advection and radiative heating explains the buildup in MSE seen over the rainy region of the DAEWs that is not seen in SNDAEWs. These results underscore the importance of moisture, cloud–radiation interactions, and horizontal MSE advection in tropical cyclone (TC) development over these regions. Significance StatementAfrican easterly waves are the most common precursors of tropical cyclones in the Atlantic basin. Despite significant progress in understanding the processes that distinguish waves that develop into tropical cyclones versus those that do not, important gaps in knowledge remain. In this study, we employed a wave-centered compositing scheme and the moist static energy budget to understand the differences between easterly waves that develop and the strongest nondeveloping waves. Our results show that waves that develop into tropical cyclones occur in a more humid environment where less dry air is transported toward the wave’s rainy region. The more humid environment is also associated with stronger rainfall as well as stronger radiative heating in developing waves, the latter which favors the buildup of moisture in developing waves. Our results underscore the importance of water vapor and its horizontal distribution in determining the development of African easterly waves.more » « less
-
Theory and modeling are combined to reveal the physical and dynamical processes that control Saharan dust transport by amplifying African easterly waves (AEWs). Two cases are examined: active transport, in which the dust is radiatively coupled to the circulation; passive transport, in which the dust is radiatively decoupled from the circulation. The theory is built around a dust conservation equation for dust-coupled AEWs in zonal-mean African easterly jets. The theory predicts that, for both the passive and active cases, the dust transports will be largest where the zonal-mean dust gradients are maximized on an AEW critical surface. Whether the dust transports are largest for the radiatively passive or radiatively active case depends on the growth rate of the AEWs, which is modulated by the dust heating. The theoretical predictions are confirmed via experiments carried out with the Weather Research and Forecasting model, which is coupled to a dust conservation equation. The experiments show that the meridional dust transports dominate in the passive case, while the vertical dust transports dominate in the active case.more » « less
-
Abstract While considerable attention has been given to how convectively coupled Kelvin waves (CCKWs) influence the genesis of tropical cyclones (TCs) in the Atlantic Ocean, less attention has been given to their direct influence on African easterly waves (AEWs). This study builds a climatology of AEW and CCKW passages from 1981 to 2019 using an AEW-following framework. Vertical and horizontal composites of these passages are developed and divided into categories based on AEW position and CCKW strength. Many of the relationships that have previously been found for TC genesis also hold true for non-developing AEWs. This includes an increase in convective coverage surrounding the AEW center in phase with the convectively enhanced (“active”) CCKW crest, as well as a buildup of relative vorticity from the lower to upper troposphere following this active crest. Additionally, a new finding is that CCKWs induce specific humidity anomalies around AEWs that are qualitatively similar to those of relative vorticity. These modifications to specific humidity are more pronounced when AEWs are at lower latitudes and interacting with stronger CCKWs. While the influence of CCKWs on AEWs is mostly transient and short lived, CCKWs do modify the AEW propagation speed and westward-filtered relative vorticity, indicating that they may have some longer-term influences on the AEW life cycle. Overall, this analysis provides a more comprehensive view of the AEW–CCKW relationship than has previously been established, and supports assertions by previous studies that CCKW-associated convection, specific humidity, and vorticity may modify the favorability of AEWs to TC genesis over the Atlantic.more » « less
-
null (Ed.)Abstract Global climate models (GCMs) are critical tools for understanding and projecting climate variability and change, yet the performance of these models is notoriously weak over much of tropical Africa. To improve this situation, process-based studies of African climate dynamics and their representation in GCMs are required. Here, we focus on summer rainfall of eastern Africa (SREA), which is crucial to the Ethiopian Highlands and feeds the flow of the Blue Nile River. The SREA region is highly vulnerable to droughts, with El Niño–Southern Oscillation (ENSO) being a leading cause of interannual rainfall variability. Adequate understanding and accurate representation of climate features that influence regional variability is an important but often neglected issue when evaluating models. We perform a process-based evaluation of GCMs, focusing on the upper-troposphere tropical easterly jet (TEJ), which has been hypothesized to link ENSO to SREA. We find that most models have an ENSO–TEJ coupling similar to observed, but the models diverge in their representation of TEJ–SREA coupling. Differences in the latter explain the majority (80%) of variability in ENSO teleconnection simulation across the models. This is higher than the variance explained by rainfall coupling with the Somali jet (44%) and African easterly jet (55%). However, our diagnostics of the leading hypothesized mechanism in the models—variability in divergence in the TEJ exit region—are not consistent across models and suggest that a deeper understanding of the mechanisms of TEJ–precipitation coupling should be a priority for studies of climate variability and change in the region.more » « less
An official website of the United States government
