skip to main content


Title: A Multi-Task Learning Formulation for Survival Analysis
Predicting the occurrence of a particular event of interest at future time points is the primary goal of survival analysis. The presence of incomplete observations due to time limitations or loss of data traces is known as censoring which brings unique challenges in this domain and differentiates survival analysis from other standard regression methods. The popularly used survival analysis methods such as Cox proportional hazard model and parametric survival regression suffer from some strict assumptions and hypotheses that are not realistic in most of the real-world applications. To overcome the weaknesses of these two types of methods, in this paper, we reformulate the survival analysis problem as a multi-task learning problem and propose a new multi-task learning based formulation to predict the survival time by estimating the survival status at each time interval during the study duration. We propose an indicator matrix to enable the multi-task learning algorithm to handle censored instances and incorporate some of the important characteristics of survival problems such as non-negative non-increasing list structure into our model through max-heap projection. We employ the L2,1-norm penalty which enables the model to learn a shared representation across related tasks and hence select important features and alleviate over-fitting in high-dimensional feature spaces; thus, reducing the prediction error of each task. To efficiently handle the two non-smooth constraints, in this paper, we propose an optimization method which employs Alternating Direction Method of Multipliers (ADMM) algorithm to solve the proposed multi-task learning problem. We demonstrate the performance of the proposed method using real-world microarray gene expression high-dimensional benchmark datasets and show that our method outperforms state-of-the-art methods.  more » « less
Award ID(s):
1527827
NSF-PAR ID:
10021819
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
Page Range / eLocation ID:
1715 to 1724
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Survival analysis aims at predicting time to event of interest along with its probability on longitudinal data. It is commonly used to make predictions for a single specific event of interest at a given time point. However, predicting the occurrence of multiple events simultaneously and dynamically is needed in many applications. An intuitive way to solve this problem is to simply apply the regular survival analysis method independently to each task at each time point. However, it often leads to a suboptimal solution since the underlying dependencies between tasks are ignored, which motivates us to analyze these tasks jointly to select common features shared across all tasks. In this paper, we formulate a temporal Multi-Task learning framework (MTMT) using tensor representation. More specifically, given a survival dataset and a sequence of time points, which are considered as the monitored time points, we model each task at each time point as a regular survival analysis problem and optimize them simultaneously. We demonstrate the performance of MTMT model on two real-world datasets. We show the superior performance of the MTMT model compared to several state-of-the-art models. We also provide the list of important features selected to demonstrate the interpretability of our model. 
    more » « less
  2. In the recent years, reciprocal link prediction has received some attention from the data mining and social network analysis researchers, who solved this problem as a binary classification task. However, it is also important to predict the interval time for the creation of reciprocal link. This is a challenging problem for two reasons: First, the lack of effective features, because well-known link prediction features are designed for undirected networks and for the binary classification task, hence they do not work well for the interval time prediction; Second, the presence of censored data instances makes the traditional supervised regression methods unsuitable for solving this problem. In this paper, we propose a solution for the reciprocal link interval time prediction task. We map this problem into survival analysis framework and show through extensive experiments on real-world datasets that, survival analysis methods perform better than traditional regression, neural network based model and support vector regression (SVR). 
    more » « less
  3. Due to the potentially significant benefits for society, forecasting spatio-temporal societal events is currently attracting considerable attention from researchers. Beyond merely predicting the occurrence of future events, practitioners are now looking for information about specific subtypes of future events in order to allocate appropriate amounts and types of resources to manage such events and any associated social risks. However, forecasting event subtypes is far more complex than merely extending binary prediction to cover multiple classes, as 1) different locations require different models to handle their characteristic event subtype patterns due to spatial heterogeneity; 2) historically, many locations have only experienced a incomplete set of event subtypes, thus limiting the local model’s ability to predict previously “unseen” subtypes; and 3) the subtle discrepancy among different event subtypes requires more discriminative and profound representations of societal events. In order to address all these challenges concurrently, we propose a Spatial Incomplete Multi-task Deep leArning (SIMDA) framework that is capable of effectively forecasting the subtypes of future events. The new framework formulates spatial locations into tasks to handle spatial heterogeneity in event subtypes, and learns a joint deep representation of subtypes across tasks. Furthermore, based on the “first law of geography”, spatiallyclosed tasks share similar event subtype patterns such that adjacent tasks can share knowledge with each other effectively. Optimizing the proposed model amounts to a new nonconvex and strongly-coupled problem, we propose a new algorithm based on Alternating Direction Method of Multipliers (ADMM) that can decompose the complex problem into subproblems that can be solved efficiently. Extensive experiments on six real-world datasets demonstrate the effectiveness and efficiency of the proposed model. 
    more » « less
  4. null (Ed.)

    As heterogeneous networks have become increasingly ubiquitous, Heterogeneous Information Network (HIN) embedding, aiming to project nodes into a low-dimensional space while preserving the heterogeneous structure, has drawn increasing attention in recent years. Many of the existing HIN embedding methods adopt meta-path guided random walk to retain both the semantics and structural correlations between different types of nodes. However, the selection of meta-paths is still an open problem, which either depends on domain knowledge or is learned from label information. As a uniform blueprint of HIN, the network schema comprehensively embraces the high-order structure and contains rich semantics. In this paper, we make the first attempt to study network schema preserving HIN embedding, and propose a novel model named NSHE. In NSHE, a network schema sampling method is first proposed to generate sub-graphs (i.e., schema instances), and then multi-task learning task is built to preserve the heterogeneous structure of each schema instance. Besides preserving pairwise structure information, NSHE is able to retain high-order structure (i.e., network schema). Extensive experiments on three real-world datasets demonstrate that our proposed model NSHE significantly outperforms the state-of-the-art methods.

     
    more » « less
  5. Multi-instance learning (MIL) is an area of machine learning that handles data that is organized into sets of instances known as bags. Traditionally, MIL is used in the supervised-learning setting and is able to classify bags which can contain any number of instances. This property allows MIL to be naturally applied to solve the problems in a wide variety of real-world applications from computer vision to healthcare. However, many traditional MIL algorithms do not scale efficiently to large datasets. In this paper we present a novel Primal-Dual Multi-Instance Support Vector Machine (pdMISVM) derivation and implementation that can operate efficiently on large scale data. Our method relies on an algorithm derived using a multi-block variation of the alternating direction method of multipliers (ADMM). The approach presented in this work is able to scale to large-scale data since it avoids iteratively solving quadratic programming problems which are generally used to optimize MIL algorithms based on SVMs. In addition, we modify our derivation to include an additional optimization designed to avoid solving a least-squares problem during our algorithm; this optimization increases the utility of our approach to handle a large number of features as well as bags. Finally, we apply our approach to synthetic and real-world multi-instance datasets to illustrate the scalability, promising predictive performance, and interpretability of our proposed method. We end our discussion with an extension of our approach to handle non-linear decision boundaries. Code and data for our methods are available online at: https://github.com/minds-mines/pdMISVM.jl. 
    more » « less