skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization of nanostructure ferrite material on gallium nitride on SiC substrate for millimeter wave integrated circuit
In this paper, for the first time, the characterization of spin-casted thick Barium nano-hexaferrite film on GaN-on-SiC substrate over a broad frequency range of 30-110 GHz is presented. Real and imaginary parts of both permittivity and permeability of the ferrite/polymer film are computed from transmittance data obtained by using a free space quasi-optical millimeter wave spectrometer. The spin-casted composite film shows strong resonance in the Q band, and mixing the powder with polymer slightly shifts the resonance frequency lower compared to pure powder. The high temperature compatibility of GaN substrate enables us to run burn-out tests at temperatures up to 900°C. Significant shortening phenomenon of resonance linewidth after heat treatment was found. Linewidth is reduced from 2.8 kOe to 1.7 kOe. Experiment results show that the aforementioned film is a good candidate in applications of non-reciprocal ferrite devices like isolators, phase shifters, and circulators.  more » « less
Award ID(s):
1808147
PAR ID:
10024372
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
AIP Advances
Volume:
7
Issue:
5
ISSN:
2158-3226
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This work focuses on the nature of magnetic anisotropy in 2.5–16 micron thick films of nickel ferrite (NFO) grown by liquid phase epitaxy (LPE). The technique, ideal for rapid growth of epitaxial oxide films, was utilized for films on (100) and (110) substrates of magnesium gallate (MGO). The motivation was to investigate the dependence of the growth induced anisotropy field on film thickness since submicron films of NFO were reported to show a very high anisotropy. The films grown at 850–875 C and subsequently annealed at 1000 C were found to be epitaxial, with the out-of-plane lattice constant showing unanticipated decrease with increasing film thickness and the estimated in-plane lattice constant increasing with the film thickness. The uniaxial anisotropy field H σ , estimated from X-ray diffraction data, ranged from 2.8–7.7 kOe with the films on (100) MGO having a higher H σ value than for the films on (110) MGO. Ferromagnetic resonance (FMR) measurements for in-plane and out-of-plane static magnetic field were utilized to determine both the magnetocrystalline the anisotropy field H 4 and the uniaxial anisotropy field H a . Values of H 4 range from −0.24 to −0.86 kOe. The uniaxial anisotropy field H a was an order of magnitude smaller than H σ and it decreased with increasing film thickness for NFO films on (100) MGO, but H a increased with film thickness for films on (110) MGO substrates. These observations indicate that the origin of the induced anisotropy could be attributed to several factors including (i) strain due to mismatch in the film-substrate lattice constants, (ii) possible variations in the bond lengths and bond angles in NFO during the growth process, and (iii) the strain arising from mismatch in the thermal expansion coefficients of the film and the substrate due to the high growth and annealing temperatures involved in the LPE technique. The LPE films of NFO on MGO substrates studied in this work are of interest for use in high frequency devices. 
    more » « less
  2. This report is on the nature of strain in thin films of yttrium iron garnet (YIG) on yttrium aluminum garnet (YAG) substrates due to film-substrate lattice mismatch and the resulting induced magnetic anisotropy. Films with thickness 55 nm to 380 nm were deposited on (100), (110), and (111) YAG substrates using pulsed laser deposition (PLD) techniques and characterized by structural and magnetic characterization techniques. The in-plane strain determined to be compressive using X-ray diffraction (XRD). It varied from −0.12% to −0.98% and increased in magnitude with increasing film thickness and was relatively large in films on (100) YAG. The out-of-plane strain was tensile and also increased with increasing film thickness. The estimated strain-induced magnetic anisotropy field, found from XRD data, was out of plane; its value increased with film thickness and ranged from 0.47 kOe to 3.96 kOe. Ferromagnetic resonance (FMR) measurements at 5 to 21 GHz also revealed the presence of a perpendicular magnetic anisotropy that decreased with increasing film thickness and its values were smaller than values obtained from XRD data. The PLD YIG films on YAG substrates exhibiting a perpendicular anisotropy field have the potential for use in self-biased sensors and high-frequency devices. 
    more » « less
  3. This paper discusses the terahertz electromagnetic response of metallic gratings on anisotropic dielectric substrates. The metallic gratings consist of parallel gold stripes. Utilizing numerical simulations, we observe that it is possible to excite a series of resonant modes in these structures. These modes are affected differently by the different indices on the anisotropic substrate. An analytical model is discussed to show that modes associated with transmission peaks are due to the excitation of (a) Fabry–Pérot modes with polarization along the grating and/or (b) waveguide modes with polarization perpendicular to the grating. It is observed that the resonance associated with the TM1,1mode is a narrow linewidth resonance which, in some particular circumstances, becomes nearly independent of substrate thickness. Therefore, from the spectral position of this resonance, it is possible to extract the out-of-plane component of the substrate refractive index with very small uncertainty. Based on this observation, we demonstrate the refractive index characterization of several lossless semiconductor substrates through frequency-domain polarized terahertz transmission measurements in the frequency range of 0.2–0.6 THz at normal incidence. The reliability of the technique is demonstrated on well-known materials, such as high-resistivity silicon and sapphire substrates. This technique is also applied for the characterization of a Fe-doped β-Ga2O3single-crystal substrate. 
    more » « less
  4. Ferromagnetic resonance force microscopy (FMRFM) is a powerful scanned probe technique that uses sub-micrometer-scale, spatially localized standing spin wave modes (LMs) to perform local ferromagnetic resonance (FMR) measurements. Here, we show the spatially resolved imaging of Gilbert damping in a ferromagnetic material (FM) using FMRFM. Typically damping is measured from the FMR linewidth. We demonstrate an approach to image the spatial variation of Gilbert damping utilizing the LM resonance peak height to measure the LM resonance cone angle. This approach enables determination of damping through field-swept FMRFM at a single excitation frequency. The extreme force sensitivity of ∼2 fN at room temperature can resolve changes of Gilbert damping as small as ∼2×10−4 at 2 GHz, corresponding to ∼0.16 Oe in FMR linewidth resolution. This high sensitivity, high spatial resolution, and single frequency imaging of Gilbert damping creates the opportunity to study spin interactions at the interface between an insulating FM and a small volume of nonmagnetic material such as atomically thin two-dimensional materials. 
    more » « less
  5. Composites of ferromagnetic and ferroelectric phases are of interest for studies on mechanical strain-mediated coupling between the two phases and for a variety of applications in sensors, energy harvesting, and high-frequency devices. Nanocomposites are of particular importance since their surface area-to-volume ratio, a key factor that determines the strength of magneto-electric (ME) coupling, is much higher than for bulk or thin-film composites. Core–shell nano- and microcomposites of the ferroic phases are the preferred structures, since they are free of any clamping due to substrates that are present in nanobilayers or nanopillars on a substrate. This review concerns recent efforts on ME coupling in coaxial fibers of spinel or hexagonal ferrites for the magnetic phase and PZT or barium titanate for the ferroelectric phase. Several recent studies on the synthesis and ME measurements of fibers with nickel ferrite, nickel zinc ferrite, or cobalt ferrite for the spinel ferrite and M-, Y-, and W-types for the hexagonal ferrites were considered. Fibers synthesized by electrospinning were found to be free of impurity phases and had uniform core and shell structures. Piezo force microscopy (PFM) and scanning microwave microscopy (SMM) measurements of strengths of direct and converse ME effects on individual fibers showed evidence for strong coupling. Results of low-frequency ME voltage coefficient and magneto-dielectric effects on 2D and 3D films of the fibers assembled in a magnetic field, however, were indicative of ME couplings that were weaker than in bulk or thick-film composites. A strong ME interaction was only evident from data on magnetic field-induced variations in the remnant ferroelectric polarization in the discs of the fibers. Follow-up efforts aimed at further enhancement in the strengths of ME coupling in core–shell composites are also discussed in this review. 
    more » « less