skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Blending machine and human learning processes
Citizen science projects face a dilemma in relying on contributions from volunteers to achieve their scientific goals: providing volunteers with explicit training might increase the quality of contributions, but at the cost of losing the work done by newcomers during the training period, which for many is the only work they will contribute to the project. Based on research in cognitive science on how humans learn to classify images, we have designed an approach to use machine learning to guide the presentation of tasks to newcomers that help them more quickly learn how to do the image classification task while still contributing to the work of the project. A Bayesian model for tracking volunteer learning is presented.  more » « less
Award ID(s):
1547880
PAR ID:
10026452
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the Annual Hawaii International Conference on System Sciences
ISSN:
1530-1605
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sserwanga, I. (Ed.)
    Citizen scientists make valuable contributions to science but need to learn about the data they are working with to be able to perform more advanced tasks. We present a set of design principles for identifying the kinds of background knowledge that are important to support learning at different stages of engagement, drawn from a study of how free/libre open source software developers are guided to create and use documents. Specifically, we suggest that newcomers require help understanding the purpose, form and content of the documents they engage with, while more advanced developers add understanding of information provenance and the boundaries, relevant participants and work processes. We apply those principles in two separate but related studies. In study 1, we analyze the background knowledge presented to volunteers in the Gravity Spy citizen-science project, mapping the resources to the framework and identifying kinds of knowledge that were not initially provided. In study 2, we use the principles proactively to develop design suggestions for Gravity Spy 2.0, which will involve volunteers in analyzing more diverse sources of data. This new project extends the application of the principles by seeking to use them to support understanding of the relationships between documents, not just the documents individually. We conclude by discussing future work, including a planned evaluation of Gravity Spy 2.0 that will provide a further test of the design principles. 
    more » « less
  2. Data work is often completed by crowdworkers, who are routinely dehumanized, disempowered, and sidelined. We turn to citizen science to reimagine data work, highlighting collaborative relationships between citizen science project managers and volunteers. Though citizen science and traditional crowd work entail similar forms of data work, such as classifying or transcribing large data sets, citizen science relies on volunteer contributions rather than paid data work. We detail the work citizen science project managers did to shape volunteer experiences: aligning science goals, minimizing barriers to participation, engaging communities, communicating with volunteers, providing training and education, rewarding contributions, and reflecting on volunteer work. These management strategies created opportunities for meaningful work by cultivating intrinsic motivation and fostering collaborative work relationships but ultimately limited participation to specific data-related tasks. We recommend management tactics and task design strategies for creating meaningful work for invisible collar workers, an understudied class of labor in CSCW. 
    more » « less
  3. In this paper, we describe the results of an online field experiment examining the impacts of messaging about task novelty on the volume of volunteers’ contributions to an online citizen science project. Encouraging volunteers to provide a little more content as they work is an attractive strategy to increase the community’s output. Prior research found that an important motivation for participation in online citizen science is the wonder of being the first person to observe a particular image. To appeal to this motivation, a pop-up message was added to an online citizen science project that alerted volunteers when they were the first to annotate a particular image. Our analysis reveals that new volunteers who saw these messages increased the volume of annotations they contributed. The results of our study suggest an additional strategy to increase the amount of work volunteers contribute to online communities and citizen science projects specifically. 
    more » « less
  4. Abstract The Gravity Spy project aims to uncover the origins of glitches, transient bursts of noise that hamper analysis of gravitational-wave data. By using both the work of citizen-science volunteers and machine learning algorithms, the Gravity Spy project enables reliable classification of glitches. Citizen science and machine learning are intrinsically coupled within the Gravity Spy framework, with machine learning classifications providing a rapid first-pass classification of the dataset and enabling tiered volunteer training, and volunteer-based classifications verifying the machine classifications, bolstering the machine learning training set and identifying new morphological classes of glitches. These classifications are now routinely used in studies characterizing the performance of the LIGO gravitational-wave detectors. Providing the volunteers with a training framework that teaches them to classify a wide range of glitches, as well as additional tools to aid their investigations of interesting glitches, empowers them to make discoveries of new classes of glitches. This demonstrates that, when giving suitable support, volunteers can go beyond simple classification tasks to identify new features in data at a level comparable to domain experts. The Gravity Spy project is now providing volunteers with more complicated data that includes auxiliary monitors of the detector to identify the root cause of glitches. 
    more » « less
  5. Gravity Spy is a citizen science project that draws on the contributions of both humans and machines to achieve its scientific goals. The system supports the Laser Interferometer Gravitational Observatory (LIGO) by classifying “glitches” that interfere with observations. The system makes three advances on the current state of the art: explicit training for new volunteers, synergy between machine and human classification and support for discovery of new classes of glitch. As well, it provides a platform for human-centred computing research on motivation, learning and collaboration. The system has been launched and is currently in operation. 
    more » « less