skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inorganic carbon and oxygen dynamics in a marsh-dominated estuary: Inorganic carbon and oxygen dynamics
Award ID(s):
1832178
PAR ID:
10027823
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography
Volume:
63
Issue:
1
ISSN:
0024-3590
Page Range / eLocation ID:
47 to 71
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Rivers efficiently collect, process, and transport terrestrial‐derived carbon. River ecosystem metabolism is the primary mechanism for processing carbon. Diel cycles of dissolved oxygen (DO) have been used for decades to infer river ecosystem metabolic rates, which are routinely used to predict metabolism of carbon dioxide (CO2) with uncertainties of the assumed stoichiometry ranging by a factor of 4. Dissolved inorganic carbon (DIC) has been less used to directly infer metabolism because it is more difficult to quantify, involves the complexity of inorganic carbon speciation, and as shown in this study, likely requires a two‐station approach. Here, we developed DIC metabolism models using single‐ and two‐station approaches. We compared metabolism estimates based on simultaneous DO and DIC monitoring in the Upper Clark Fork River (USA), which also allowed us to estimate ecosystem‐level photosynthetic and respiratory quotients (PQEand RQE). We observed that metabolism estimates from DIC varied more between single‐ and two‐station approaches than estimates from DO. Due to carbonate buffering, CO2is slower to equilibrate with the atmosphere compared to DO, likely incorporating a longer distance of upstream heterogeneity. Reach‐averaged PQEranged from 1.5 to 2.0, while RQEranged from 0.8 to 1.5. Gross primary production from DO was larger than that from DIC, as was net ecosystem production by . The river was autotrophic based on DO but heterotrophic based on DIC, complicating our understanding of how metabolism regulated CO2production. We suggest future studies simultaneously model metabolism from DO and DIC to understand carbon processing in rivers. 
    more » « less
  2. This package provides necessary supporting data and models for the manuscript titled "Divergent metabolism estimates from dissolved oxygen and inorganic carbon: implications for river carbon cycling". The entire dataset consists of sensor data collected at three reaches and metabolism estimates from different models. The sensor data include partial pressure of carbon dioxide in water, dissolved oxygen and temperature. At each reach, we established a two station approach, meaning at least one pair of sensor suits were distributed upstream and downstream. Results for metabolism estimates differ by solutes (i.e., oxygen or carbon based) and modelling approaches (i.e., single station or two station approach). In addition to data products, we also provide R packages for metabolism models. 
    more » « less