Evaluating the role of watershed properties in long-term water balance through a Budyko equation based on two-stage partitioning of precipitation: A FOUR-PARAMETER BUDYKO EQUATION
- Award ID(s):
- 1665343
- PAR ID:
- 10028490
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 53
- Issue:
- 5
- ISSN:
- 0043-1397
- Page Range / eLocation ID:
- 4142 to 4157
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We present a detailed study of a scalar differential equation with threshold state-dependent delayed feedback. This equation arises as a simplification of a gene regulatory model. There are two monotone nonlinearities in the model: one describes the dependence of delay on state, and the other is the feedback nonlinearity. Both increasing and decreasing nonlinearities are considered. Our analysis is exhaustive both analytically and numerically as we examine the bifurcations of the system for various combinations of increasing and decreasing nonlinearities. We identify rich bifurcation patterns including Bautin, Bogdanov–Takens, cusp, fold, homoclinic, and Hopf bifurcations whose existence depend on the derivative signs of nonlinearities. Our analysis confirms many of these patterns in the limit where the nonlinearities are switch-like and change their value abruptly at a threshold. Perhaps one of the most surprising findings is the existence of a Hopf bifurcation to a periodic solution when the nonlinearity is monotone increasing and the time delay is a decreasing function of the state variable.more » « less
-
We discuss how a magnetic field can affect the equation of state of a many-particle neutron system. We show that, due to the anisotropy in the pressures, the pressure transverse to the magnetic field direction increases with the magnetic field, while the one along the field direction decreases. We also show that in this medium there exists a significant negative field-dependent contribution associated with the vacuum pressure. This negative pressure demands a neutron density sufficiently high (corresponding to a baryonic chemical potential of μ = 2.25 GeV) to produce the necessary positive matter pressure that can compensate for the gravitational pull. The decrease of the parallel pressure with the field limits the maximum magnetic field to a value of the order of 10 18 G, where the pressure decays to zero. We show that the combination of all these effects produces an insignificant variation of the system equation of state. We also found that this neutron system exhibits paramagnetic behavior expressed by the Curie’s law in the high-temperature regime. The reported results may be of interest for the astrophysics of compact objects such as magnetars, which are endowed with substantial magnetic fields.more » « less
An official website of the United States government
