skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Narrowing the Gap: Effects of Latency with Docker in IP Networks
Recent work has shown that lightweight virtualization like Docker containers can be used in HPC to package applications with their runtime environments. In many respects, applications in containers perform similarly to native applications. Other work has shown that containers can have adverse effects on the latency variation of communications with the enclosed application. This latency variation may have an impact on the performance of some HPC workloads, especially those dependent on synchronization between processes. In this work, we measure the latency characteristics of messages between Docker containers, and then compare those measurements to the performance of real-world applications. Our specific goals are to: measure the changes in mean and variation of latency with Docker containers, study how this affects the synchronization time of MPI processes, and measure the impact of these factors on real­world applications such as the NAS Parallel Benchmark (NPB).  more » « less
Award ID(s):
1642542
PAR ID:
10028492
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The International Conference for High Performance Computing, Networking, Storage and Analysis, Student Poster
Issue:
2016
Page Range / eLocation ID:
1-4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The HPC community is actively researching and evaluating tools to support execution of scientific applications in cloud-based environ- ments. Among the various technologies, containers have recently gained importance as they have significantly better performance compared to full-scale virtualization, support for microservices and DevOps, and work seamlessly with workflow and orchestration tools. Docker is currently the leader in containerization technology because it offers low overhead, flexibility, portability of applications, and reproducibility. Singularity is another container solution that is of interest as it is designed specifically for scientific applications. It is important to conduct performance and feature analysis of the container technologies to understand their applicability for each application and target execution environment. This paper presents a (1) performance evaluation of Docker and Singularity on bare metal nodes in the Chameleon cloud (2) mecha- nism by which Docker containers can be mapped with InfiniBand hardware with RDMA communication and (3) analysis of mapping elements of parallel workloads to the containers for optimal re- source management with container-ready orchestration tools. Our experiments are targeted toward application developers so that they can make informed decisions on choosing the container tech- nologies and approaches that are suitable for their HPC workloads on cloud infrastructure. Our performance analysis shows that sci- entific workloads for both Docker and Singularity based containers can achieve near-native performance. Singularity is designed specifically for HPC workloads. However, Docker still has advantages over Singularity for use in clouds as it provides overlay networking and an intuitive way to run MPI applications with one container per rank for fine-grained resources allocation. Both Docker and Singularity make it possible to directly use the underlying network fabric from the containers for coarse- grained resource allocation. 
    more » « less
  2. Container systems (e.g., Docker) provide a well-defined, lightweight, and versatile foundation to streamline the process of tool deployment, to provide a consistent and repeatable experimental interface, and to leverage data centers in the global cloud infrastructure as measurement vantage points. However, the virtual network devices commonly used to connect containers to the Internet are known to impose latency overheads which distort the values reported by measurement tools running inside containers. In this study, we develop a tool called MACE to measure and remove the latency overhead of virtual network devices as used by Docker containers. A key insight of MACE is the fact that container functions all execute in the same kernel. Based on this insight, MACE is implemented as a Linux kernel module using the trace event subsystem to measure latency along the network stack code path. Using CloudLab, we evaluate MACE by comparing the ping measurements emitted from a slim-ping container to the ones emitted using the same tool running in the bare metal machine under varying traffic loads. Our evaluation shows that the MACE-adjusted RTT measurements are within 20 µs of the bare metal ping RTTs on average while incurring less than 25 µs RTT perturbation. We also compare RTT perturbation incurred by MACE with perturbation incurred by the built-in ftrace kernel tracing system and find that MACE incurs less perturbation. 
    more » « less
  3. Application containers, such as those provided by Docker, have recently gained popularity as a solution for agile and seamless software deployment. These light-weight virtualization environments run applications that are packed together with their resources and configuration information, and thus can be deployed across various software platforms. Unfortunately, the ease with which containers can be created is oftentimes a double-edged sword, encouraging the packaging of logically distinct applications, and the inclusion of significant amount of unnecessary components, within a single container. These practices needlessly increase the container size - sometimes by orders of magnitude. They also decrease the overall security, as each included component - necessary or not - may bring in security issues of its own, and there is no isolation between multiple applications packaged within the same container image. We propose algorithms and a tool called Cimplifier, which address these concerns: given a container and simple user-defined constraints, our tool partitions it into simpler containers, which (i) are isolated from each other, only communicating as necessary, and (ii) only include enough resources to perform their functionality. Our evaluation on real-world containers demonstrates that Cimplifier preserves the original functionality, leads to reduction in image size of up to 95%, and processes even large containers in under thirty seconds. 
    more » « less
  4. Enterprise and Cloud environments are rapidly evolving with the use of lightweight virtualization mechanisms such as containers. Containerization allow users to deploy applications in any environment faster and more efficiently than using virtual machines. However, most of the work in this area focused on Linux-based containerization such as Docker and LXC and other mature solutions such as FreeBSD Jails have not been adopted by production-ready environments. In this work we explore the use of FreeBSD virtualization and provide a comparative study with respect to Linux containerization using Apache Spark. Preliminary results show that, while Linux containers provide better performance, FreeBSD solutions provide more stable and consistent results. 
    more » « less
  5. null (Ed.)
    Performance variation deriving from hardware and software sources is common in modern scientific and data-intensive computing systems, and synchronization in parallel and distributed programs often exacerbates their impacts at scale. The decentralized and emergent effects of such variation are, unfortunately, also difficult to systematically measure, analyze, and predict; modeling assumptions which are stringent enough to make analysis tractable frequently cannot be guaranteed at meaningful application scales, and longitudinal methods at such scales can require the capture and manipulation of impractically large amounts of data. This paper describes a new, scalable, and statistically robust approach for effective modeling, measurement, and analysis of large-scale performance variation in HPC systems. Our approach avoids the need to reason about complex distributions of runtimes among large numbers of individual application processes by focusing instead on the maximum length of distributed workload intervals. We describe this approach and its implementation in MPI which makes it applicable to a diverse set of HPC workloads. We also present evaluations of these techniques for quantifying and predicting performance variation carried out on large-scale computing systems, and discuss the strengths and limitations of the underlying modeling assumptions. 
    more » « less