skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: How They Did It: An Analysis of Emission Defeat Devices in Modern Automobiles
Modern vehicles are required to comply with a range of environmental regulations limiting the level of emissions for various greenhouse gases, toxins and particulate matter. To ensure compliance, regulators test vehicles in controlled settings and empirically measure their emissions at the tailpipe. However, the black box nature of this testing and the standardization of its forms have created an opportunity for evasion. Using modern electronic engine controllers, manufacturers can programmatically infer when a car is undergoing an emission test and alter the behavior of the vehicle to comply with emission standards, while exceeding them during normal driving in favor of improved performance. While the use of such a defeat device by Volkswagen has brought the issue of emissions cheating to the public's attention, there have been few details about the precise nature of the defeat device, how it came to be, and its effect on vehicle behavior. In this paper, we present our analysis of two families of software defeat devices for diesel engines: one used by the Volkswagen Group to pass emissions tests in the US and Europe, and a second that we have found in Fiat Chrysler Automobiles. To carry out this analysis, we developed new static analysis firmware forensics techniques necessary to automatically identify known defeat devices and confirm their function. We tested about 900 firmware images and were able to detect a potential defeat device in more than 400 firmware images spanning eight years. We describe the precise conditions used by the firmware to detect a test cycle and how it affects engine behavior. This work frames the technical challenges faced by regulators going forward and highlights the important research agenda in providing focused software assurance in the presence of adversarial manufacturers.  more » « less
Award ID(s):
1646493
PAR ID:
10029049
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
IEEE Symposium on Security and Privacy
Page Range / eLocation ID:
231 to 250
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Combustion vehicle emissions contribute to poor air quality and release greenhouse gases into the atmosphere, and vehicle pollution has been associated with numerous adverse health effects. Roadways with extensive waiting and/or passenger drop-off, such as schools and hospital drop-off zones, can result in a high incidence and density of idling vehicles. This can produce micro-climates of increased vehicle pollution. Thus, the detection of idling vehicles can be helpful in monitoring and responding to unnecessary idling and be integrated into real-time or off-line systems to address the resulting pollution. In this paper, we present a real-time, dynamic vehicle idling detection algorithm. The proposed idle detection algorithm and notification rely on an algorithm to detect these idling vehicles. The proposed method relies on a multisensor, audio-visual, machine-learning workflow to detect idling vehicles visually under three conditions: moving, static with the engine on, and static with the engine off. The visual vehicle motion detector is built in the first stage, and then a contrastive-learning-based latent space is trained for classifying static vehicle engine sound. We test our system in real-time at a hospital drop-off point in Salt Lake City. This in situ dataset was collected and annotated, and it includes vehicles of varying models and types. The experiments show that the method can detect engine switching on or off instantly and achieves 71.02 average precision (AP) for idle detection and 91.06 for engine off detection. 
    more » « less
  2. The automotive Controller Area Network (CAN) allows Electronic Control Units (ECUs) to communicate with each other and control various vehicular functions such as engine and braking control. Consequently CAN and ECUs are high priority targets for hackers. As CAN implementation details are held as proprietary information by vehicle manufacturers, it can be challenging to decode and correlate CAN messages to specific vehicle operations. To understand the precise meanings of CAN messages, reverse engineering techniques that are time-consuming, manually intensive, and require a physical vehicle are typically used. This work aims to address the process of reverse engineering CAN messages for their functionality by creating a machine learning classifier that analyzes messages and determines their relationship to other messages and vehicular functions. Our work examines CAN traffic of different vehicles and standards to show that it can be applied to a wide arrangement of vehicles. The results show that the function of CAN messages can be determined without the need to manually reverse engineer a physical vehicle. 
    more » « less
  3. The Arctic presents various challenges for a transition to electric vehicles compared to other regions of the world, including environmental conditions such as colder temperatures, differences in infrastructure, and cultural and economic factors. For this study, academic researchers partnered with three rural communities: Kotzebue, Galena, and Bethel, Alaska, USA. The study followed a co-production process that actively involved community partners to identify 21 typical vehicle use cases that were then empirically modeled to determine changes in fueling costs and greenhouse gas emissions related to a switch from an internal combustion engine to an electric vehicle. While most use cases showed decreases in fueling costs and climate emissions from a transition to electric versions of the vehicles, some common use profiles did not. Specifically, the short distances of typical commutes, when combined with low idling and engine block heater use, led to an increase in both fueling costs and emissions. Arctic communities likely need public investment and additional innovation in incentives, vehicle types, and power systems to fully and equitably participate in the transition to electrified transportation. More research on electric vehicle integration, user behavior, and energy demand at the community level is needed. 
    more » « less
  4. Controller Area Network (CAN) is the de-facto standard in-vehicle network system. Despite its wide adoption by automobile manufacturers, the lack of security design makes it vulnerable to attacks. For instance, broadcasting packets without authentication allows the impersonation of electronic control units (ECUs). Prior mitigations, such as message authentication or intrusion detection systems, fail to address the compatibility requirement with legacy ECUs, stealthy and sporadic malicious messaging, or guaranteed attack detection. We propose a novel authentication system called ShadowAuth that overcomes the aforementioned challenges by offering backward-compatible packet authentication to ECUs without requiring ECU firmware source code. Specifically, our authentication scheme provides transparent CAN packet authentication without modifying existing CAN packet definitions (e.g., J1939) via automatic ECU firmware instrumentation technique to locate CAN packet transmission code, and instrument authentication code based on the CAN packet behavioral transmission patterns. ShadowAuth enables vehicles to detect state-of-the-art CAN attacks, such as bus-off and packet injection, responsively within 60ms without false positives. ShadowAuth provides a sound and deployable solution for real-world ECUs. 
    more » « less
  5. This research analyzed the real-world NOx and particle number (PN) emissions of 21 China VI heavy-duty diesel trucks (HDDTs). On-road emission conformity was first evaluated with portable emission measurement system (PEMS). Only 76.19 %, 71.43 % and 61.90 % of the vehicles passed the NOx test, PN test and both tests, respectively. The impacts of vehicle features including exhaust gas recirculation (EGR) equipment, mileage and tractive tonnage were then assessed. Results demonstrated that EGR helped reducing NOx emission factors (EFs) while increased PN EFs. Larger mileages and tractive tonnages corresponded to higher NOx and PN EFs, respectively. In-depth analyses regarding the influences of operating conditions on emissions were conducted with both numerical comparisons and statistical tests. Results proved that HDDTs generated higher NOx EFs under low speeds or large vehicle specific powers (VSPs), and higher PN EFs under high speeds or small VSPs in general. In addition, unqualified vehicles generated significantly higher NOx EFs than qualified vehicles on freeways or under speed≄40 km/h, while significant higher PN EFs were generated on suburban roads, freeways or under operating modes with positive VSPs by unqualified vehicles. The reliability and accuracy of on-board diagnostic (OBD) NOx data were finally investigated. Results revealed that 43 % of the test vehicles did not report reliable OBD data. Correlation analyses between OBD NOx and PEMS measurements further demonstrated that the consistency of instantaneous concentrations were generally low. However, sliding window averaged concentrations show better correlations, e.g., the Pearson correlation coefficients on 20s-window averaged concentrations exceeded 0.85 for most vehicles. The research results provide valuable insights into emission regulation, e.g., focusing more on medium- to high-speed operations to identify unqualified vehicles, setting higher standards to improve the quality of OBD data, and adopting window averaged OBD NOx concentrations in evaluating vehicle emission performance. 
    more » « less