skip to main content


Title: Thermodynamics of an aminoglycoside modifying enzyme with low substrate promiscuity: The aminoglycoside N3 acetyltransferase‐VIa
ABSTRACT

Kinetic, thermodynamic, and structural properties of the aminoglycosideN3‐acetyltransferase‐VIa (AAC‐VIa) are determined. Among the aminoglycosideN3‐acetyltransferases, AAC‐VIa has one of the most limited substrate profiles. Kinetic studies showed that only five aminoglycosides are substrates for this enzyme with a range of fourfold difference inkcatvalues. Larger differences inKM(∼40‐fold) resulted in ∼30‐fold variation inkcat/KM. Binding of aminoglycosides to AAC‐VIa was enthalpically favored and entropically disfavored with a net result of favorable Gibbs energy (ΔG < 0). A net deprotonation of the enzyme, ligand, or both accompanied the formation of binary and ternary complexes. This is opposite of what was observed with several other aminoglycosideN3‐acetyltransferases, where ligand binding causes more protonation. The change in heat capacity (ΔCp) was different in H2O and D2O for the binary enzyme–sisomicin complex but remained the same in both solvents for the ternary enzyme–CoASH–sisomicin complex. Unlike, most other aminoglycoside‐modifying enzymes, the values of ΔCp were within the expected range of protein‐carbohydrate interactions. Solution behavior of AAC‐VIa was also different from the more promiscuous aminoglycosideN3‐acetyltransferases and showed a monomer‐dimer equilibrium as detected by analytical ultracentrifugation (AUC). Binding of ligands shifted the enzyme to monomeric state. Data also showed that polar interactions were the most dominant factor in dimer formation. Overall, thermodynamics of ligand‐protein interactions and differences in protein behavior in solution provide few clues on the limited substrate profile of this enzyme despite its >55% sequence similarity to the highly promiscuous aminoglycosideN3‐acetyltransferase. Proteins 2017; 85:1258–1265. © 2017 Wiley Periodicals, Inc.

 
more » « less
NSF-PAR ID:
10033042
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Proteins: Structure, Function, and Bioinformatics
Volume:
85
Issue:
7
ISSN:
0887-3585
Page Range / eLocation ID:
p. 1258-1265
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Chloramphenicol acetyltransferases (CATs) were among the first antibiotic resistance enzymes identified and have long been studied as model enzymes for examining plasmid‐mediated antibiotic resistance. These enzymes acetylate the antibiotic chloramphenicol, which renders it incapable of inhibiting bacterial protein synthesis. CATs can be classified into different types: Type A CATs are known to be important for antibiotic resistance to chloramphenicol and fusidic acid. Type B CATs are often called xenobiotic acetyltransferases and adopt a similar structural fold to streptogramin acetyltransferases, which are known to be critical for streptogramin antibiotic resistance. Type C CATs have recently been identified and can also acetylate chloramphenicol, but their roles in antibiotic resistance are largely unknown. Here, we structurally and kinetically characterized threeVibrioCAT proteins from a nonpathogenic species (Aliivibrio fisheri) and two important human pathogens (Vibrio choleraeandVibrio vulnificus). We found all three proteins, including one in a superintegron (V. cholerae), acetylated chloramphenicol, but did not acetylate aminoglycosides or dalfopristin. We also determined the 3D crystal structures of these CATs alone and in complex with crystal violet and taurocholate. These compounds are known inhibitors of Type A CATs, but have not been explored in Type B and Type C CATs. Based on sequence, structure, and kinetic analysis, we concluded that theV. choleraeandV. vulnificusCATs belong to the Type B class and theA. fisheriCAT belongs to the Type C class. Ultimately, our results provide a framework for studying the evolution of antibiotic resistance gene acquisition and chloramphenicol acetylation inVibrioand other species.

     
    more » « less
  2. Abstract

    ADP‐glucose pyrophosphorylase is a key regulatory enzyme involved in starch and glycogen synthesis in plants and bacteria, respectively. It has been hypothesized that inter‐subunit communications are important for the allosteric effect in this enzyme. However, no specific interactions have been identified as part of the regulatory signal. The enzyme fromAgrobacterium tumefaciensis a homotetramer allosterically regulated by fructose 6‐phosphate and pyruvate. Three pairs of distinct subunit‐subunit interfaces are present. Here we focus on an interface that features two symmetrical interactions between Arg11 and Asp141 from one subunit with residues Asp141 and Arg11 of the neighbor subunit, respectively. Previously, scanning mutagenesis showed that a mutation at the Arg11 position disrupted the activation of the enzyme. Considering the distance of these residues from the allosteric and catalytic sites, we hypothesized that the interaction between Arg11 and Asp141 is critical for allosteric signaling rather than effector binding. To prove our hypothesis, we mutated those two sites (D141A, D141E, D141N, D141R, R11D, and R11K) and performed kinetic and binding analysis. Mutations that altered the charge affected the regulation the most. To prove that the interaction per se (rather than the presence of specific residues) is critical, we partially rescued the R11D protein by introducing a second mutation (R11D/D141R). This could not restore the activator effect onkcat, but it did rescue the effect on substrate affinity. Our results indicate the critical functional role of Arg11 and Asp141 to relay the allosteric signal in this subunit interface.

     
    more » « less
  3. Two amino acid variants in soybean serine hydroxymethyltransferase 8 (SHMT8) are associated with resistance to the soybean cyst nematode (SCN), a devastating agricultural pathogen with worldwide economic impacts on soybean production. SHMT8 is a cytoplasmic enzyme that catalyzes the pyridoxal 5‐phosphate‐dependent conversion of serine and tetrahydrofolate (THF) to glycine and 5,10‐methylenetetrahydrofolate. A previous study of the P130R/N358Y double variant of SHMT8, identified in the SCN‐resistant soybean cultivar (cv.) Forrest, showed profound impairment of folate binding affinity and reduced THF‐dependent enzyme activity, relative to the highly active SHMT8 in cv. Essex, which is susceptible to SCN. Given the importance of SCN‐resistance in soybean agriculture, we report here the biochemical and structural characterization of the P130R and N358Y single variants to elucidate their individual effects on soybean SHMT8. We find that both single variants have reduced THF‐dependent catalytic activity relative to Essex SHMT8 (10‐ to 50‐fold decrease inkcat/Km) but are significantly more active than the P130R/N368Y double variant. The kinetic data also show that the single variants lack THF‐substrate inhibition as found in Essex SHMT8, an observation with implications for regulation of the folate cycle. Five crystal structures of the P130R and N358Y variants in complex with various ligands (resolutions from 1.49 to 2.30 Å) reveal distinct structural impacts of the mutations and provide new insights into allosterism. Our results support the notion that the P130R/N358Y double variant in Forrest SHMT8 produces unique and unexpected effects on the enzyme, which cannot be easily predicted from the behavior of the individual variants.

     
    more » « less
  4. Abstract

    Recently, we reported the discovery of a novel endoglucanase of the glycoside hydrolase family 12 (GH12), designated IfCelS12A, from the haloalkaliphilic anaerobic bacteriumIocasia fonsfrigidaestrain SP3-1, which was isolated from a hypersaline pond in the Samut Sakhon province of Thailand (ca. 2017). IfCelS12A exhibits high substrate specificity on carboxymethyl cellulose and amorphous cellulose but low substrate specificity on b-1,3;1,4-glucan. Unlike some endoglucanases of the GH12 family, IfCelS12A does not exhibit hydrolytic activity on crystalline cellulose (i.e., Avicel™). High-Pressure Liquid Chromatography (HPLC) and Thin Layer Chromatography (TLC) analyses of products resulting from IfCelS12-mediated hydrolysis indicate mode of action for this enzyme. Notably, IfCelS12A preferentially hydrolyzes cellotetraoses, cellopentaoses, and cellohexaoses with negligible activity on cellobiose or cellotriose. Kinetic analysis with cellopentaose and barely b-d-glucan as cellulosic substrates were conducted. On cellopentaose, IfCelS12A demonstrates a 16-fold increase in activity (KM = 0.27 mM;kcat = 0.36 s−1;kcat/KM = 1.34 mM−1s−1) compared to the enzymatic hydrolysis of barley b-d-glucan (KM: 0.04 mM,kcat: 0.51 s−1,kcat/KM = 0.08 mM−1s−1). Moreover, IfCelS12A enzymatic efficacy is stable in hypersaline sodium chlorids (NaCl) solutions (up to 10% NaCl). Specifically, IfCel12A retains notable activity after 24 h at 2M NaCl (10% saline solution). IfCelS12A used as a cocktail component with other cellulolytic enzymes and in conjunction with mobile sequestration platform technology offers additional options for deconstruction of ionic liquid–pretreated cellulosic feedstock.

    Key points

    IfCelS12A from an anaerobic alkaliphile Iocasia fronsfrigidae shows salt tolerance

    IfCelS12A in cocktails with other enzymes efficiently degrades cellulosic biomass

    IfCelS12A used with mobile enzyme sequestration platforms enhances hydrolysis

     
    more » « less
  5. Mutations in the GTPase enzyme K-Ras, specifically at codon G12, remain the most common genetic alterations in human cancers. The mechanisms governing activation of downstream signaling pathways and how they relate back to the identity of the mutation have yet to be completely defined. Here we use native mass spectrometry (MS) combined with ultraviolet photodissociation (UVPD) to investigate the impact of three G12X mutations (G12C, G12V, G12S) on the homodimerization of K-Ras as well as heterodimerization with a downstream effector protein, Raf. Electrospray ionization (ESI) was used to transfer complexes of WT or G12X K-Ras bound to guanosine 5′-diphosphate (GDP) or GppNHp (non-hydrolyzable analogue of GTP) into the gas phase. Relative abundances of homo- or hetero-dimer complexes were estimated from ESI-MS spectra. K-Ras + Raf heterocomplexes were activated with UVPD to probe structural changes responsible for observed differences in the amount of heterocomplex formed for each variant. Holo (ligand-bound) fragment ions resulting from photodissociation suggest the G12X mutants bind Raf along the expected effector binding region (β-interface) but may interact with Raf via an alternative α-interface as well. Variations in backbone cleavage efficiencies during UV photoactivation of each variant were used to relate mutation identity to structural changes that might impact downstream signaling. Specifically, oncogenic upregulation for hydrogen-bonding amino acid substitutions (G12C, G12S) is achieved by stabilizing β-interface interactions with Raf, while a bulkier, hydrophobic G12V substitution leads to destabilization of this interface and instead increases the proximity of residues along the α-helical bundles. This study deciphers new pieces of the complex puzzle of how different K-Ras mutations exert influence in downstream signaling. 
    more » « less