skip to main content


Title: NP-Hardness of Reed-Solomon Decoding and the Prouhet-Tarry-Escott Problem
Establishing the complexity of {\em Bounded Distance Decoding} for Reed-Solomon codes is a fundamental open problem in coding theory, explicitly asked by Guruswami and Vardy (IEEE Trans. Inf. Theory, 2005). The problem is motivated by the large current gap between the regime when it is NP-hard, and the regime when it is efficiently solvable (i.e., the Johnson radius). We show the first NP-hardness results for asymptotically smaller decoding radii than the maximum likelihood decoding radius of Guruswami and Vardy. Specifically, for Reed-Solomon codes of length $N$ and dimension $K=O(N)$, we show that it is NP-hard to decode more than $ N-K- c\frac{\log N}{\log\log N}$ errors (with $c>0$ an absolute constant). Moreover, we show that the problem is NP-hard under quasipolynomial-time reductions for an error amount $> N-K- c\log{N}$ (with $c>0$ an absolute constant). An alternative natural reformulation of the Bounded Distance Decoding problem for Reed-Solomon codes is as a {\em Polynomial Reconstruction} problem. In this view, our results show that it is NP-hard to decide whether there exists a degree $K$ polynomial passing through $K+ c\frac{\log N}{\log\log N}$ points from a given set of points $(a_1, b_1), (a_2, b_2)\ldots, (a_N, b_N)$. Furthermore, it is NP-hard under quasipolynomial-time reductions to decide whether there is a degree $K$ polynomial passing through $K+c\log{N}$ many points. These results follow from the NP-hardness of a generalization of the classical Subset Sum problem to higher moments, called {\em Moments Subset Sum}, which has been a known open problem, and which may be of independent interest. We further reveal a strong connection with the well-studied Prouhet-Tarry-Escott problem in Number Theory, which turns out to capture a main barrier in extending our techniques. We believe the Prouhet-Tarry-Escott problem deserves further study in the theoretical computer science community.  more » « less
Award ID(s):
1649515
NSF-PAR ID:
10033549
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
FOCS
Page Range / eLocation ID:
760 to 769
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A collection of sets displays aproximity gapwith respect to some property if for every set in the collection, either (i) all members areδ-close to the property in relative Hamming distance or (ii) only a tiny fraction of members areδ-close to the property. In particular, no set in the collection has roughly half of its membersδ-close to the property and the othersδ-far from it.

    We show that the collection of affine spaces displays a proximity gap with respect to Reed–Solomon (RS) codes, even over small fields, of size polynomial in the dimension of the code, and the gap applies to anyδsmaller than the Johnson/Guruswami–Sudan list-decoding bound of the RS code. We also show near-optimal gap results, over fields of (at least)linearsize in the RS code dimension, forδsmaller than the unique decoding radius. Concretely, ifδis smaller than half the minimal distance of an RS code\(V\subset {\mathbb {F}}_q^n \), every affine space is either entirelyδ-close to the code, or alternatively at most an (n/q)-fraction of it isδ-close to the code. Finally, we discuss several applications of our proximity gap results to distributed storage, multi-party cryptographic protocols, and concretely efficient proof systems.

    We prove the proximity gap results by analyzing the execution of classical algebraic decoding algorithms for Reed–Solomon codes (due to Berlekamp–Welch and Guruswami–Sudan) on aformal elementof an affine space. This involves working with Reed–Solomon codes whose base field is an (infinite) rational function field. Our proofs are obtained by developing an extension (to function fields) of a strategy of Arora and Sudan for analyzing low-degree tests.

     
    more » « less
  2. null (Ed.)
    A collection of sets displays a proximity gap with respect to some property if for every set in the collection, either (i) all members are δ-close to the property in relative Hamming distance or (ii) only a tiny fraction of members are δ-close to the property. In particular, no set in the collection has roughly half of its members δ-close to the property and the others δ-far from it. We show that the collection of affine spaces displays a proximity gap with respect to Reed-Solomon (RS) codes, even over small fields, of size polynomial in the dimension of the code, and the gap applies to any δ smaller than the Johnson/Guruswami-Sudan list-decoding bound of the RS code. We also show near-optimal gap results, over fields of (at least) linear size in the RS code dimension, for δ smaller than the unique decoding radius. Concretely, if δ is smaller than half the minimal distance of an RS code V ⊂ Fq n , every affine space is either entirely δ-close to the code, or alternatively at most an ( n/q)-fraction of it is δ-close to the code. Finally, we discuss several applications of our proximity gap results to distributed storage, multi-party cryptographic protocols, and concretely efficient proof systems. We prove the proximity gap results by analyzing the execution of classical algebraic decoding algorithms for Reed-Solomon codes (due to Berlekamp-Welch and Guruswami-Sudan) on a formal element of an affine space. This involves working with Reed-Solomon codes whose base field is an (infinite) rational function field. Our proofs are obtained by developing an extension (to function fields) of a strategy of Arora and Sudan for analyzing low-degree tests. 
    more » « less
  3. We introduce a novel family of expander-based error correcting codes. These codes can be sampled with randomness linear in the block-length, and achieve list decoding capacity (among other local properties). Our expander-based codes can be made starting from any family of sufficiently low-bias codes, and as a consequence, we give the first construction of a family of algebraic codes that can be sampled with linear randomness and achieve list-decoding capacity. We achieve this by introducing the notion of a pseudorandom puncturing of a code, where we select n indices of a base code C ⊂ 𝔽_q^m in a correlated fashion. Concretely, whereas a random linear code (i.e. a truly random puncturing of the Hadamard code) requires O(n log(m)) random bits to sample, we sample a pseudorandom linear code with O(n + log (m)) random bits by instantiating our pseudorandom puncturing as a length n random walk on an exapnder graph on [m]. In particular, we extend a result of Guruswami and Mosheiff (FOCS 2022) and show that a pseudorandom puncturing of a small-bias code satisfies the same local properties as a random linear code with high probability. As a further application of our techniques, we also show that pseudorandom puncturings of Reed-Solomon codes are list-recoverable beyond the Johnson bound, extending a result of Lund and Potukuchi (RANDOM 2020). We do this by instead analyzing properties of codes with large distance, and show that pseudorandom puncturings still work well in this regime. 
    more » « less
  4. Ahn, Hee-Kap ; Sadakane, Kunihiko (Ed.)
    In the standard planar k-center clustering problem, one is given a set P of n points in the plane, and the goal is to select k center points, so as to minimize the maximum distance over points in P to their nearest center. Here we initiate the systematic study of the clustering with neighborhoods problem, which generalizes the k-center problem to allow the covered objects to be a set of general disjoint convex objects C rather than just a point set P. For this problem we first show that there is a PTAS for approximating the number of centers. Specifically, if r_opt is the optimal radius for k centers, then in n^O(1/ε²) time we can produce a set of (1+ε)k centers with radius ≤ r_opt. If instead one considers the standard goal of approximating the optimal clustering radius, while keeping k as a hard constraint, we show that the radius cannot be approximated within any factor in polynomial time unless P = NP, even when C is a set of line segments. When C is a set of unit disks we show the problem is hard to approximate within a factor of (√{13}-√3)(2-√3) ≈ 6.99. This hardness result complements our main result, where we show that when the objects are disks, of possibly differing radii, there is a (5+2√3)≈ 8.46 approximation algorithm. Additionally, for unit disks we give an O(n log k)+(k/ε)^O(k) time (1+ε)-approximation to the optimal radius, that is, an FPTAS for constant k whose running time depends only linearly on n. Finally, we show that the one dimensional version of the problem, even when intersections are allowed, can be solved exactly in O(n log n) time. 
    more » « less
  5. The Minimum Circuit Size Problem (MCSP) has been the focus of intense study recently; MCSP is hard for SZK under rather powerful reductions, and is provably not hard under "local" reductions computable in TIME(n^0.49) . The question of whether MCSP is NP-hard (or indeed, hard even for small subclasses of P) under some of the more familiar notions of reducibility (such as many-one or Turing reductions computable in polynomial time or in AC^0) is closely related to many of the longstanding open questions in complexity theory. All prior hardness results for MCSP hold also for computing somewhat weak approximations to the circuit complexity of a function. Some of these results were proved by exploiting a connection to a notion of time-bounded Kolmogorov complexity (KT) and the corresponding decision problem (MKTP). More recently, a new approach for proving improved hardness results for MKTP was developed, but this approach establishes only hardness of extremely good approximations of the form 1+o(1), and these improved hardness results are not yet known to hold for MCSP. In particular, it is known that MKTP is hard for the complexity class DET under nonuniform AC^0 m-reductions, implying MKTP is not in AC^0[p] for any prime p. It was still open if similar circuit lower bounds hold for MCSP. One possible avenue for proving a similar hardness result for MCSP would be to improve the hardness of approximation for MKTP beyond 1 + o(1) to omega(1), as KT-complexity and circuit size are polynomially-related. In this paper, we show that this approach cannot succeed. More speci cally, we prove that PARITY does not reduce to the problem of computing superlinear approximations to KT-complexity or circuit size via AC^0-Turing reductions that make O(1) queries. This is signi cant, since approximating any set in P/poly AC^0-reduces to just one query of a much worse approximation of circuit size or KT-complexity. For weaker approximations, we also prove non-hardness under more powerful reductions. Our non-hardness results are unconditional, in contrast to conditional results presented in earlier work (for more powerful reductions, but for much worse approximations). This highlights obstacles that would have to be overcome by any proof that MKTP or MCSP is hard for NP under AC^0 reductions. It may also be a step toward con rming a conjecture of Murray and Williams, that MCSP is not NP-complete under logtime-uniform AC0 m-reductions. 
    more » « less