skip to main content

Title: SparseMaps—A systematic infrastructure for reduced scaling electronic structure methods. V. Linear scaling explicitly correlated coupled-cluster method with pair natural orbitals
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
The Journal of Chemical Physics
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present two algorithms to compute system-specific polarizabilities and dispersion coefficients such that required memory and computational time scale linearly with increasing number of atoms in the unit cell for large systems. The first algorithm computes the atom-in-material (AIM) static polarizability tensors, force-field polarizabilities, and C 6 , C 8 , C 9 , C 10 dispersion coefficients using the MCLF method. The second algorithm computes the AIM polarizability tensors and C 6 coefficients using the TS-SCS method. Linear-scaling computational cost is achieved using a dipole interaction cutoff length function combined with iterative methods that avoid large dense matrix multiplies and large matrix inversions. For MCLF, Richardson extrapolation of the screening increments is used. For TS-SCS, a failproof conjugate residual (FCR) algorithm is introduced that solves any linear equation system having Hermitian coefficients matrix. These algorithms have mathematically provable stable convergence that resists round-off errors. We parallelized these methods to provide rapid computation on multi-core computers. Excellent parallelization efficiencies were obtained, and adding parallel processors does not significantly increase memory requirements. This enables system-specific polarizabilities and dispersion coefficients to be readily computed for materials containing millions of atoms in the unit cell. The largest example studied herein is an ice crystal containing >2 million atoms in the unit cell. For this material, the FCR algorithm solved a linear equation system containing >6 million rows, 7.57 billion interacting atom pairs, 45.4 billion stored non-negligible matrix components used in each large matrix-vector multiplication, and ∼19 million unknowns per frequency point (>300 million total unknowns). 
    more » « less
  2. Abstract

    Diffusive theories for the meridional atmospheric energy transport can summarize our understanding of this central aspect of the general circulation. They can also be utilized in simple models of Earth’s energy balance to help interpret the response of the system to perturbations. A theory for this diffusivity of eddy heat transport is described based on Rhines scaling and the global entropy budget, each of which provides a constraint between the kinetic energy dissipation and the diffusivity. An expression for the diffusivity is then obtained by eliminating the dissipation from this set of two constraints. The theory can be thought of as a generalization of the theories of Held–Larichev and Barry–Craig–Thuburn. The theory is compared to simulations of the Held–Suarez idealized dry atmospheric model. Limitations of the theory are emphasized. The form of the theory allows it to be readily generalized to a moist atmosphere.

    more » « less