skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Interactive Learning from Policy-Dependent Human Feedback
This paper investigates the problem of interactively learning behaviors communicated by a human teacher using positive and negative feedback. Much previous work on this problem has made the assumption that people provide feedback for decisions that is dependent on the behavior they are teaching and is independent from the learner’s current policy. We present empirical results that show this assumption to be false—whether human trainers give a positive or negative feedback for a decision is influenced by the learner’s current policy. Based on this insight, we introduce Convergent Actor-Critic by Humans (COACH), an algorithm for learning from policy-dependent feedback that converges to a local optimum. Finally, we demonstrate that COACH can successfully learn multiple behaviors on a physical robot.  more » « less
Award ID(s):
1643413
PAR ID:
10037674
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
ICML
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Interactive reinforcement learning (IRL) agents use human feedback or instruction to help them learn in complex environments. Often, this feedback comes in the form of a discrete signal that’s either positive or negative. While informative, this information can be difficult to generalize on its own. In this work, we explore how natural language advice can be used to provide a richer feedback signal to a reinforcement learning agent by extending policy shaping, a well-known IRL technique. Usually policy shaping employs a human feedback policy to help an agent to learn more about how to achieve its goal. In our case, we replace this human feedback policy with policy generated based on natural language advice. We aim to inspect if the generated natural language reasoning provides support to a deep RL agent to decide its actions successfully in any given environment. So, we design our model with three networks: first one is the experience driven, next is the advice generator and third one is the advice driven. While the experience driven RL agent chooses its actions being influenced by the environmental reward, the advice driven neural network with generated feedback by the advice generator for any new state selects its actions to assist the RL agent to better policy shaping. 
    more » « less
  2. We consider a new problem of selling data to a machine learner who looks to purchase data to train his machine learning model. A key challenge in this setup is that neither the seller nor the machine learner knows the true quality of data. When designing a revenue-maximizing mechanism, a data seller faces the tradeoff between the cost and precision of data quality estimation. To address this challenge, we study a natural class of mechanisms that price data via costly signaling. Motivated by the assumption of i.i.d. data points as in classic machine learning models, we first consider selling homogeneous data and derive an optimal selling mechanism. We then turn to the sale of heterogeneous data, motivated by the sale of multiple data sets, and show that 1) on the negative side, it is NP-hard to approximate the optimal mechanism within a constant ratio e/(e+1) + o(1); while 2) on the positive side, there is a 1/k-approximate algorithm, where k is the number of the machine learner’s private types. 
    more » « less
  3. In intelligent tutoring systems (ITS) abundant supportive messages are provided to learners. One implicit assumption behind this design is that learners would actively process and benefit from feedback messages when interacting with ITS individually. However, this is not true for all learners; some gain little after numerous practice opportunities. In the current research, we assume that if the learner invests enough cognitive effort to review feedback messages provided by the system, the learner’s performance should be improved as practice opportunities accumulate. We expect that the learner’s cognitive effort investment could be reflected to some extent by the response latency, then the learner’s improvement should also be correlated with the response latency. Therefore, based on this core hypothesis, we conduct a cluster analysis by exploring features relevant to learners’ response latency. We expect to find several features that could be used as indicators of the feedback usage of learners; consequently, these features may be used to predict learners’ learning gain in future research. Our results suggest that learners’ prior knowledge level plays a role when interacting with ITS and different patterns of response latency. Learners with higher prior knowledge levels tend to interact flexibly with the system and use feedback messages more effectively. The quality of their previous attempts influences their response latency. However, learners with lower prior knowledge perform two opposite patterns, some tend to respond more quickly, and some tend to respond more slowly. One common characteristic of these learners is their incorrect response latency is not influenced by the quality of their previous performance. One interesting result is that those quick responders forget faster. Thus, we concluded that for learners with lower prior knowledge, it is better for them not to react hastily to obtain a more durable memory. 
    more » « less
  4. We study the problem of cross-embodiment inverse reinforcement learning, where we wish to learn a reward function from video demonstrations in one or more embodiments and then transfer the learned reward to a different embodiment (e.g., different action space, dynamics, size, shape, etc.). Learning reward functions that transfer across embodiments is important in settings such as teaching a robot a policy via human video demonstrations or teaching a robot to imitate a policy from another robot with a different embodiment. However, prior work has only focused on cases where near-optimal demonstrations are available, which is often difficult to ensure. By contrast, we study the setting of cross-embodiment reward learning from mixed-quality demonstrations. We demonstrate that prior work struggles to learn generalizable reward representations when learning from mixed-quality data. We then analyze several techniques that leverage human feedback for representation learning and alignment to enable effective cross-embodiment learning. Our results give insight into how different representation learning techniques lead to qualitatively different reward shaping behaviors and the importance of human feedback when learning from mixed-quality, mixed-embodiment data. 
    more » « less
  5. Reward learning as a method for inferring human intent and preferences has been studied extensively. Prior approaches make an implicit assumption that the human maintains a correct belief about the robot's domain dynamics. However, this may not always hold since the human's belief may be biased, which can ultimately lead to a misguided estimation of the human's intent and preferences, which is often derived from human feedback on the robot's behaviors. In this paper, we remove this restrictive assumption by considering that the human may have an inaccurate understanding of the robot. We propose a method called Generalized Reward Learning with biased beliefs about domain dynamics (GeReL) to infer both the reward function and human's belief about the robot in a Bayesian setting based on human ratings. Due to the complex forms of the posteriors, we formulate it as a variational inference problem to infer the posteriors of the parameters that govern the reward function and human's belief about the robot simultaneously. We evaluate our method in a simulated domain and with a user study where the user has a bias based on the robot's appearances. The results show that our method can recover the true human preferences while subject to such biased beliefs, in contrast to prior approaches that could have misinterpreted them completely. 
    more » « less