skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Building a socio-technical theory of coordination: why and how (outstanding research award)
Research aimed at understanding and addressing coordination breakdowns experienced in global software development (GSD) projects at Lucent Technologies took a path from open-ended qualitative exploratory studies to quantitative studies with a tight focus on a key problem – delay – and its causes. Rather than being directly associated with delay, multi-site work items involved more people than comparable same-site work items, and the number of people was a powerful predictor of delay. To counteract this, we developed and deployed tools and practices to support more effective communication and expertise location. After conducting two case studies of open source development, an extreme form of GSD, we realized that many tools and practices could be effective for multi-site work, but none seemed to work under all conditions. To achieve deeper insight, we developed and tested our Socio-Technical Theory of Coordination (STTC) in which the dependencies among engineering decisions are seen as defining a constraint satisfaction problem that the organization can solve in a variety of ways. I conclude by explaining how we applied these ideas to transparent development environments, then sketch important open research questions.  more » « less
Award ID(s):
1633083 0534656 0414698 0943168 1546393 1111750 1322278
PAR ID:
10038303
Author(s) / Creator(s):
Date Published:
Journal Name:
ACM SIGSOFT International Symposium on Foundations of Software Engineering
Page Range / eLocation ID:
2 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This check sheet provides a list of tools, supplies, and other materials commonly used during post-disaster field research. It is organized by category, including: technology, documents, research supplies, personal items, and team supplies. Researchers may use this list to ensure they have procured and readied necessary items prior to entering the field. About the CONVERGE Extreme Events Research Check Sheets Series: The National Science Foundation-supported CONVERGE facility at the Natural Hazards Center at the University of Colorado Boulder has developed a series of short, graphical check sheets that are meant to be used as researchers design their studies, prepare to enter the field, conduct field research, and exit the field. The series offers best practices for extreme events research and includes check sheets that are free to the research community. More information is available at: https://converge.colorado.edu/resources/check-sheets. 
    more » « less
  2. A series of international workshops held in 2014, 2017, 2019, and 2022 focused on improving tephra studies from field collection through publication and encouraging FAIR (findable, accessible, interoperable, reusable) data practices for tephra data and metadata. Two consensus needs for tephra studies emerged from the 2014 and 2017 workshops: (a) standardization of tephra field data collection, geochemical analysis, correlation, and data reporting, and (b) development of next generation computer tools and databases to facilitate information access across multidisciplinary communities. To achieve (a), we developed a series of recommendations for best practices in tephra studies, from sample collection through analysis and data reporting (https://zenodo.org/record/3866266). A 4-part virtual workshop series (https://tephrochronology.org/cot/Tephra2022/) was held in February and March, 2022, to update the tephra community on these developments, to get community feedback, to learn of unmet needs, and to plan a future roadmap for open and FAIR tephra data. More than 230 people from 25 nations registered for the workshop series. The community strongly emphasized the need for better computer systems, including physical infrastructure (repositories and servers), digital infrastructure (software and tools) and human infrastructure (people, training, and professional assistance), to store, manage and serve global tephra datasets. Some desired attributes of improved computer systems include: 1) user friendliness 2) ability to easily ingest multiparameter tephra data (using best practice recommended data fields); 3) interoperability with existing data repositories; 4) development of tool add-ons (plotting and statistics); 5) improved searchability 6) development of a tephra portal with access to distributed data systems, and 7) commitments to long-term support from funding agencies, publishers and the cyberinfrastructure community. 
    more » « less
  3. Recent CSCW research on the collaborative design and development of research infrastructures for the natural sciences has increasingly focused on the challenges of open data sharing. This qualitative study describes and analyzes how multidisciplinary, geographically distributed ocean scientists are integrating highly diverse data as part of an effort to develop a new research infrastructure to advance science. This paper identifies different kinds of coordination that are necessary to align processes of data collection, production, and analysis. Some of the hard work to integrate data is undertaken before data integration can even become a technical problem. After data integration becomes a technical problem, social and organizational means continue to be critical for resolving differences in assumptions, methods, practices, and priorities. This work calls attention to the diversity of coordinative, social, and organizational practices and concerns that are needed to integrate data and also how, in highly innovative work, the process of integrating data also helps to define scientific problem spaces themselves. 
    more » « less
  4. Abstract The era of ‘big data’ promises to provide new hydrologic insights, and open web‐based platforms are being developed and adopted by the hydrologic science community to harness these datasets and data services. This shift accompanies advances in hydrology education and the growth of web‐based hydrology learning modules, but their capacity to utilize emerging open platforms and data services to enhance student learning through data‐driven activities remains largely untapped. Given that generic equations may not easily translate into local or regional solutions, teaching students to explore how well models or equations work in particular settings or to answer specific problems using real data is essential. This article introduces an open web‐based module developed to advance data‐driven hydrologic process learning, targeting upper level undergraduate and early graduate students in hydrology and engineering. The module was developed and deployed on the HydroLearn open educational platform, which provides a formal pedagogical structure for developing effective problem‐based learning activities. We found that data‐driven learning activities utilizing collaborative open web platforms like CUAHSI HydroShare and JupyterHub to store and run computational notebooks allowed students to access and work with datasets for systems of personal interest and promoted critical evaluation of results and assumptions. Initial student feedback was generally positive, but also highlighted challenges including trouble‐shooting and future‐proofing difficulties and some resistance to programming and new software. Opportunities to further enhance hydrology learning include better articulating the benefits of coding and open web platforms upfront, incorporating additional user‐support tools, and focusing methods and questions on implementing and adapting notebooks to explore fundamental processes rather than tools and syntax. The profound shift in the field of hydrology toward big data, open data services and reproducible research practices requires hydrology instructors to rethink traditional content delivery and focus instruction on harnessing these datasets and practices in the preparation of future hydrologists and engineers. 
    more » « less
  5. Awareness of a STEM discipline is a complex construct to operationalize; a learner’s awareness of a discipline is sometimes viewed through the lens of personal identity, use of relevant discourse, or knowledge of career pathways. This research proposes defining engineering awareness through a learner’s associations with engineering practices - fundamental processes involved in engineering such as identifying criteria and constraints, testing designs, diagnosing issues and assessing goal completion. In this study, a learner’s engineering awareness was determined by examining 1) their ability to name or identify the engineering-related practices and processes they used, 2) associating those practices and processes with engineering, and 3) reporting that those were practices and processes that engineers use. This research was conducted in a large science center in the Pacific Northwest and capitalizes on science center exhibits as unique family learning environments in the interest of promoting and strengthening family engagement and engineering learning. Participant selection focused on girls ages 9–14 and their families, ensuring the inclusion and influence of members of Latino communities (Spanish speaking and bilingual English/Spanish). Data were collected at three different design challenge exhibits. Engineering awareness was measured using three items on a visitor survey administered following a groups’ exhibit experience and through interview responses which were coded for mention of the words design, engineering and a list of associated practices. Participants were given the option of completing the survey and interview in English or Spanish. The study found that participants overwhelmingly reported that they were doing engineering at exhibits; however, in open-ended responses from the interview, most groups simply implied or named specific engineering design practices rather than use the term engineering. The words building, testing, and improving designs were reported more frequently than words such as defining a problem, making a plan, or completing a challenge. The type of responses about using engineering practices varied by type of exhibit which suggests that different exhibits might encourage respondents to engage in, or recognise that they are engaging in, some engineering design practices more than others. This work proposes an operational definition to measure learners’ awareness of engaging in engineering practices. This definition and the instruments and methods developed to measure awareness in this way are contributions to the larger conversations on this topic in the field. Findings from this study offer insights into how learners identify engineering-related practices and how they associate those practices with engineering. As part of a five-year, federally funded project, the result of this work informs the development of new design challenge exhibits, and the instruments and methods will be used in a second research study to explore how these new exhibits and the addition of staff facilitation impact visitor use and awareness of engineering practices. 
    more » « less