skip to main content

This content will become publicly available on July 18, 2023

Title: Memristor Based Federated Learning for Network Security on the Edge using Processing in Memory (PIM) Computing
Artificial Intelligence (AI) is moving towards the edge. Training an AI model for edge computing on a centralized server increases latency, and the privacy of edge users is jeopardized due to private data transfer through a less secure communication channels. Additionally, existing high-power computing systems are battling with memory and data transfer bottlenecks between the processor and memory. Federated Learning (FL) is a collaborative AI learning paradigm for distributed local devices that operates without transferring local data. Local participant devices share the updated network parameters with the central server instead of sending the original data. The central server updates the global AI model and deploys the model to the local clients. As the local data resides only on the edge, these devices need to be protected from cyberattacks. The Federated Intrusion Detection System (FIDS) could be a viable system to protect edge devices as opposed to a centralized protection system. However, on-device training of the model in resource constrained devices may suffer from excessive power drain, in addition to memory and area overhead. In this work we present a memristor based system for AI training on edge devices. Memristor devices are ideal candidates for processing in memory, as their dynamic resistance more » properties allow them to perform multiply-add operations in parallel in the analog domain with extreme efficiency. Alternatively, existing CMOS-based PIM systems are typically developed for edge inference based on pretrained weights, and are not equipped for on-chip training. We show the effectiveness of the system, where successful learning and recognition is achieved completely within edge devices. The classification accuracy of the memristor system shows negligible loss when compared a software implementation. To the best of our knowledge, this first demonstration of a memristor based federated learning system. We demonstrate the effectiveness of this system as an intrusion detection platform for edge devices, although given the flexibility of the learning algorithm, it could be used to enhance many types of on board leaning and classification applications. « less
Authors:
; ;
Award ID(s):
1718633
Publication Date:
NSF-PAR ID:
10391561
Journal Name:
2022 International Joint Conference on Neural Networks (IJCNN)
Page Range or eLocation-ID:
1 to 8
Sponsoring Org:
National Science Foundation
More Like this
  1. Background The use of wearables facilitates data collection at a previously unobtainable scale, enabling the construction of complex predictive models with the potential to improve health. However, the highly personal nature of these data requires strong privacy protection against data breaches and the use of data in a way that users do not intend. One method to protect user privacy while taking advantage of sharing data across users is federated learning, a technique that allows a machine learning model to be trained using data from all users while only storing a user’s data on that user’s device. By keeping data on users’ devices, federated learning protects users’ private data from data leaks and breaches on the researcher’s central server and provides users with more control over how and when their data are used. However, there are few rigorous studies on the effectiveness of federated learning in the mobile health (mHealth) domain. Objective We review federated learning and assess whether it can be useful in the mHealth field, especially for addressing common mHealth challenges such as privacy concerns and user heterogeneity. The aims of this study are to describe federated learning in an mHealth context, apply a simulation of federated learningmore »to an mHealth data set, and compare the performance of federated learning with the performance of other predictive models. Methods We applied a simulation of federated learning to predict the affective state of 15 subjects using physiological and motion data collected from a chest-worn device for approximately 36 minutes. We compared the results from this federated model with those from a centralized or server model and with the results from training individual models for each subject. Results In a 3-class classification problem using physiological and motion data to predict whether the subject was undertaking a neutral, amusing, or stressful task, the federated model achieved 92.8% accuracy on average, the server model achieved 93.2% accuracy on average, and the individual model achieved 90.2% accuracy on average. Conclusions Our findings support the potential for using federated learning in mHealth. The results showed that the federated model performed better than a model trained separately on each individual and nearly as well as the server model. As federated learning offers more privacy than a server model, it may be a valuable option for designing sensitive data collection methods.« less
  2. Federated learning (FL) involves training a model over massive distributed devices, while keeping the training data localized and private. This form of collaborative learning exposes new tradeoffs among model convergence speed, model accuracy, balance across clients, and communication cost, with new challenges including: (1) straggler problem—where clients lag due to data or (computing and network) resource heterogeneity, and (2) communication bottleneck—where a large number of clients communicate their local updates to a central server and bottleneck the server. Many existing FL methods focus on optimizing along only one single dimension of the tradeoff space. Existing solutions use asynchronous model updating or tiering-based, synchronous mechanisms to tackle the straggler problem. However, asynchronous methods can easily create a communication bottleneck, while tiering may introduce biases that favor faster tiers with shorter response latencies. To address these issues, we present FedAT, a novel Federated learning system with Asynchronous Tiers under Non-i.i.d. training data. FedAT synergistically combines synchronous, intra-tier training and asynchronous, cross-tier training. By bridging the synchronous and asynchronous training through tiering, FedAT minimizes the straggler effect with improved convergence speed and test accuracy. FedAT uses a straggler-aware, weighted aggregation heuristic to steer and balance the training across clients for further accuracy improvement.more »FedAT compresses uplink and downlink communications using an efficient, polyline-encoding-based compression algorithm, which minimizes the communication cost. Results show that FedAT improves the prediction performance by up to 21.09% and reduces the communication cost by up to 8.5×, compared to state-of-the-art FL methods.« less
  3. Regularized sparse learning with the ℓ0-norm is important in many areas, including statistical learning and signal processing. Iterative hard thresholding (IHT) methods are the state-of-the-art for nonconvex-constrained sparse learning due to their capability of recovering true support and scalability with large datasets. The current theoretical analysis of IHT assumes the use of centralized IID data. In realistic large-scale scenarios, however, data are distributed, seldom IID, and private to edge computing devices at the local level. Consequently, it is required to study the property of IHT in a federated environment, where local devices update the sparse model individually and communicate with a central server for aggregation infrequently without sharing local data. In this paper, we propose the first group of federated IHT methods: Federated Hard Thresholding (Fed-HT) and Federated Iterative Hard Thresholding (FedIter-HT) with theoretical guarantees. We prove that both algorithms have a linear convergence rate and guarantee for recovering the optimal sparse estimator, which is comparable to classic IHT methods, but with decentralized, non-IID, and unbalanced data. Empirical results demonstrate that the Fed-HT and FedIter-HT outperform their competitor—a distributed IHT, in terms of reducing objective values with fewer communication rounds and bandwidth requirements.
  4. Federated learning (FL) is a highly pursued machine learning technique that can train a model centrally while keeping data distributed. Distributed computation makes FL attractive for bandwidth limited applications especially in wireless communications. There can be a large number of distributed edge devices connected to a central parameter server (PS) and iteratively download/upload data from/to the PS. Due to limited bandwidth, only a subset of connected devices can be scheduled in each round. There are usually millions of parameters in the state-of-art machine learning models such as deep learning, resulting in a high computation complexity as well as a high communication burden on collecting/distributing data for training. To improve communication efficiency and make the training model converge faster, we propose a new scheduling policy and power allocation scheme using non-orthogonal multiple access (NOMA) settings to maximize the weighted sum data rate under practical constraints during the entire learning process. NOMA allows multiple users to transmit on the same channel simultaneously. The user scheduling problem is transformed into a maximum-weight independent set problem that can be solved using graph theory. Simulation results show that the proposed scheduling and power allocation scheme can help achieve a higher FL testing accuracy in NOMAmore »based wireless networks than other existing schemes within the same learning time.« less
  5. Edge Computing (EC) has seen a continuous rise in its popularity as it provides a solution to the latency and communication issues associated with edge devices transferring data to remote servers. EC achieves this by bringing the cloud closer to edge devices. Even though EC does an excellent job of solving the latency and communication issues, it does not solve the privacy issues associated with users transferring personal data to the nearby edge server. Federated Learning (FL) is an approach that was introduced to solve the privacy issues associated with data transfers to distant servers. FL attempts to resolve this issue by bringing the code to the data, which goes against the traditional way of sending the data to remote servers. In FL, the data stays on the source device, and a Machine Learning (ML) model used to train the local data is brought to the end device instead. End devices train the ML model using local data and then send the model updates back to the server for aggregation. However, this process of asking random devices to train a model using its local data has potential risks such as a participant poisoning the model using malicious data for trainingmore »to produce bogus parameters. In this paper, an approach to mitigate data poisoning attacks in a federated learning setting is investigated. The application of the approach is highlighted, and the practical and secure nature of this approach is illustrated as well using numerical results.« less