skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1646501

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In this notes paper, we present an open problem to the Buildsys community: energy data super-resolution, referring to the task of estimating the power consumption of a home at a higher resolution given the low-resolution power consumption. Super-resolution is especially useful when the smart meters collect data at a very low-sampling rate owing to a plethora of issues such as bandwidth, pricing, old hardware, among others. The problem is motivated by the success of image super resolution in the computer vision community. In this paper, we formally introduce the problem and present baseline methods and the algorithms we used to "solve" this problem. We evaluate the performance of the algorithms on a real-world dataset and discuss the results. We also discuss what makes this problem hard and why a trivial baseline is hard to beat. 
    more » « less
  2. null (Ed.)
  3. null (Ed.)
    Residential homes constitute roughly one-fourth of the total energy usage worldwide. Providing appliance-level energy breakdown has been shown to induce positive behavioral changes that can reduce energy consumption by 15%. Existing approaches for energy breakdown either require hardware installation in every target home or demand a large set of energy sensor data available for model training. However, very few homes in the world have installed sub-meters (sensors measuring individual appliance energy); and the cost of retrofitting a home with extensive sub-metering eats into the funds available for energy saving retrofits. As a result, strategically deploying sensing hardware to maximize the reconstruction accuracy of sub-metered readings in non-instrumented homes while minimizing deployment costs becomes necessary and promising. In this work, we develop an active learning solution based on low-rank tensor completion for energy breakdown. We propose to actively deploy energy sensors to appliances from selected homes, with a goal to improve the prediction accuracy of the completed tensor with minimum sensor deployment cost. We empirically evaluate our approach on the largest public energy dataset collected in Austin, Texas, USA, from 2013 to 2017. The results show that our approach gives better performance with fixed number of sensors installed, when compared to the state-of-the-art, which is also proven by our theoretical analysis. 
    more » « less
  4. Latent factor models have achieved great success in personalized recommendations, but they are also notoriously difficult to explain. In this work, we integrate regression trees to guide the learning of latent factor models for recommendation, and use the learnt tree structure to explain the resulting latent factors. Specifically, we build regression trees on users and items respectively with user-generated reviews, and associate a latent profile to each node on the trees to represent users and items. With the growth of regression tree, the latent factors are gradually refined under the regularization imposed by the tree structure. As a result, we are able to track the creation of latent profiles by looking into the path of each factor on regression trees, which thus serves as an explanation for the resulting recommendations. Extensive experiments on two large collections of Amazon and Yelp reviews demonstrate the advantage of our model over several competitive baseline algorithms. Besides, our extensive user study also confirms the practical value of explainable recommendations generated by our model. 
    more » « less
  5. Residential buildings constitute roughly one-fourth of the total energy use across the globe. Numerous studies have shown that providing an energy breakdown increases residents' awareness of energy use and can help save up to 15% energy. A significant amount of prior work has looked into source-separation techniques collectively called non-intrusive load monitoring (NILM), and most prior NILM research has leveraged high-frequency household aggregate data for energy breakdown. However, in practice most smart meters only sample hourly or once every 15 minutes, and existing NILM techniques show poor performance at such a low sampling rate. In this paper, we propose a TreeCNN model for energy breakdown on low frequency data. There are three key insights behind the design of our model: i) households consume energy with regular temporal patterns, which can be well captured by filters learned in CNNs; ii) tree structure isolates the pattern learning of each appliance that helps avoid magnitude variance problem, while preserves relationship among appliances; iii) tree structure enables the separation of known appliance from unknown ones, which de-noises the input time series for better appliance-level reconstruction. Our TreeCNN model outperformed seven existing baselines on a public benchmark dataset with lower estimation error and higher accuracy on detecting the active states of appliances. 
    more » « less
  6. Explaining automatically generated recommendations allows users to make more informed and accurate decisions about which results to utilize, and therefore improves their satisfaction. In this work, we develop a multi-task learning solution for explainable recommendation. Two companion learning tasks of user preference modeling for recommendation and opinionated content modeling for explanation are integrated via a joint tensor factorization. As a result, the algorithm predicts not only a user's preference over a list of items, i.e., recommendation, but also how the user would appreciate a particular item at the feature level, i.e., opinionated textual explanation. Extensive experiments on two large collections of Amazon and Yelp reviews confirmed the effectiveness of our solution in both recommendation and explanation tasks, compared with several existing recommendation algorithms. And our extensive user study clearly demonstrates the practical value of the explainable recommendations generated by our algorithm. 
    more » « less
  7. Homes constitute roughly one-third of the total energy usage worldwide. Providing an energy breakdown – energy consumption per appliance, can help save up to 15% energy. Given the vast differences in energy consumption patterns across different regions, existing energy breakdown solutions require instrumentation and model training for each geographical region, which is prohibitively expensive and limits the scalability. In this paper, we propose a novel region independent energy breakdown model via statistical transfer learning. Our key intuition is that the heterogeneity in homes and weather across different regions most significantly impacts the energy consumption across regions; and if we can factor out such heterogeneity, we can learn region independent models or the homogeneous energy breakdown components for each individual appliance. Thus, the model learnt in one region can be transferred to another region. We evaluate our approach on two U.S. cities having distinct weather from a publicly available dataset. We find that our approach gives better energy breakdown estimates requiring the least amount of instrumented homes from the target region, when compared to the state-of-the-art. 
    more » « less
  8. Homes constitute a large fraction of the total energy consumption. Producing an energy breakdown for a home has been shown to reduce household energy consumption by up to 15%, among other benefits. However, existing approaches to produce an energy breakdown require hardware to be installed in each home and are thus prohibitively expensive. In this paper, we propose a novel application of feature-based matrix factorisation that does not require any additional hardware installation. The basic premise of our approach is that common design and construction patterns for homes create a repeating structure in their energy data. Thus, a sparse basis can be used to represent energy data from a broad range of homes. We evaluate our approach on 516 homes from a publicly available data set and find it to be better than five baseline approaches that either require sensing in each home, or a very rigorous survey across a large number of homes coupled with complex modelling. We also present a deployment of our system as a live web application that can potentially provide energy breakdown to millions of homes. 
    more » « less