skip to main content

Title: Active Collaborative Sensing for Energy Breakdown
Residential homes constitute roughly one-fourth of the total energy usage worldwide. Providing appliance-level energy breakdown has been shown to induce positive behavioral changes that can reduce energy consumption by 15%. Existing approaches for energy breakdown either require hardware installation in every target home or demand a large set of energy sensor data available for model training. However, very few homes in the world have installed sub-meters (sensors measuring individual appliance energy); and the cost of retrofitting a home with extensive sub-metering eats into the funds available for energy saving retrofits. As a result, strategically deploying sensing hardware to maximize the reconstruction accuracy of sub-metered readings in non-instrumented homes while minimizing deployment costs becomes necessary and promising. In this work, we develop an active learning solution based on low-rank tensor completion for energy breakdown. We propose to actively deploy energy sensors to appliances from selected homes, with a goal to improve the prediction accuracy of the completed tensor with minimum sensor deployment cost. We empirically evaluate our approach on the largest public energy dataset collected in Austin, Texas, USA, from 2013 to 2017. The results show that our approach gives better performance with fixed number of sensors installed, when compared to the state-of-the-art, which is also proven by our theoretical analysis.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 28th ACM International Conference on Information and Knowledge Management
Page Range / eLocation ID:
1943 to 1952
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Homes constitute a large fraction of the total energy consumption. Producing an energy breakdown for a home has been shown to reduce household energy consumption by up to 15%, among other benefits. However, existing approaches to produce an energy breakdown require hardware to be installed in each home and are thus prohibitively expensive. In this paper, we propose a novel application of feature-based matrix factorisation that does not require any additional hardware installation. The basic premise of our approach is that common design and construction patterns for homes create a repeating structure in their energy data. Thus, a sparse basis can be used to represent energy data from a broad range of homes. We evaluate our approach on 516 homes from a publicly available data set and find it to be better than five baseline approaches that either require sensing in each home, or a very rigorous survey across a large number of homes coupled with complex modelling. We also present a deployment of our system as a live web application that can potentially provide energy breakdown to millions of homes. 
    more » « less
  2. Providing itemized energy consumption in a utility bill is becoming a priority, and perhaps a business practice in the near term. In recent times, a multitude of systems have been developed such as smart plugs, smart circuit breakers etc., for non-intrusive load monitoring (NILM). They are integrated either with the smart meters or at the plug-levels to footprint appliance-level energy consumption patterns in an entire home environment While deploying the existing technologies in a single home is feasible, scaling these technological advancements across thousands of homes in a region is not realized yet. This is primarily due to the cost, deployment complexity, and intrusive nature associated with these types of real deployment. Motivated by these shortcomings, in this paper we investigate the first step to address scalable disaggregation by proposing a disaggregation mechanism that works on a large dataset to accurately deconstruct the cumulative signals. We propose an iterative noise separation based approach to perform energy disaggregation using sparse coding based methodologies which work at the single ingress point of a home, i.e., at the meter level. We performed a ranked iterative signal removal methodology that effectively isolates appliances' individual signal waveform as noise on an aggregate energy datasets with moderate granularity (1 min). We performed experiments on real dataset and obtained approximately 94% energy disaggregation, i.e., disaggregated appliance-wise signal estimation accuracy. 
    more » « less
  3. With the acceleration of ICT technologies and the Internet of Things (IoT) paradigm, smart residential environments , also known as smart homes are becoming increasingly common. These environments have significant potential for the development of intelligent energy management systems, and have therefore attracted significant attention from both academia and industry. An enabling building block for these systems is the ability of obtaining energy consumption at the appliance-level. This information is usually inferred from electric signals data (e.g., current) collected by a smart meter or a smart outlet, a problem known as appliance recognition . Several previous approaches for appliance recognition have proposed load disaggregation techniques for smart meter data. However, these approaches are often very inaccurate for low consumption and multi-state appliances. Recently, Machine Learning (ML) techniques have been proposed for appliance recognition. These approaches are mainly based on passive MLs, thus requiring pre-labeled data to be trained. This makes such approaches unable to rapidly adapt to the constantly changing availability and heterogeneity of appliances on the market. In a home setting scenario, it is natural to consider the involvement of users in the labeling process, as appliances’ electric signatures are collected. This type of learning falls into the category of Stream-based Active Learning (SAL). SAL has been mainly investigated assuming the presence of an expert , always available and willing to label the collected samples. Nevertheless, a home user may lack such availability, and in general present a more erratic and user-dependent behavior. In this paper, we develop a SAL algorithm, called K -Active-Neighbors (KAN), for the problem of household appliance recognition. Differently from previous approaches, KAN jointly learns the user behavior and the appliance signatures. KAN dynamically adjusts the querying strategy to increase accuracy by considering the user availability as well as the quality of the collected signatures. Such quality is defined as a combination of informativeness , representativeness , and confidence score of the signature compared to the current knowledge. To test KAN versus state-of-the-art approaches, we use real appliance data collected by a low-cost Arduino-based smart outlet as well as the ECO smart home dataset. Furthermore, we use a real dataset to model user behavior. Results show that KAN is able to achieve high accuracy with minimal data, i.e., signatures of short length and collected at low frequency. 
    more » « less
  4. Homes constitute roughly one-third of the total energy usage worldwide. Providing an energy breakdown – energy consumption per appliance, can help save up to 15% energy. Given the vast differences in energy consumption patterns across different regions, existing energy breakdown solutions require instrumentation and model training for each geographical region, which is prohibitively expensive and limits the scalability. In this paper, we propose a novel region independent energy breakdown model via statistical transfer learning. Our key intuition is that the heterogeneity in homes and weather across different regions most significantly impacts the energy consumption across regions; and if we can factor out such heterogeneity, we can learn region independent models or the homogeneous energy breakdown components for each individual appliance. Thus, the model learnt in one region can be transferred to another region. We evaluate our approach on two U.S. cities having distinct weather from a publicly available dataset. We find that our approach gives better energy breakdown estimates requiring the least amount of instrumented homes from the target region, when compared to the state-of-the-art. 
    more » « less
  5. Radar-based solutions support practical and longi- tudinal respiration monitoring owing to their non-invasive nature. Nighttime respiration monitoring at home provides rich and high- quality data, mostly free of motion disturbances because the user is quasi-stationary during sleep, and 6-8 hours per day rather than tens of minutes, promising for longitudinal studies. However, most existing work was conducted in laboratory environments for short periods, thus the environment, user motions, and postures can differ significantly from those in real homes. To understand how to obtain quality, overnight respiration data in real homes, we conduct a thorough experimental study with 6 participants of various sleep postures over 9 nights in 4 real-home testbeds, each configured with 3–4 sensors around the bed. We first compare the performance among four typical sensor placements around the bed to understand which is the optimal location for high quality data. Then we explore methods to track range bins with high quality signals as occasional user motions change the distance thus signal qualities, and different aspects of amplitude and phase data to further improve the signal quality using metrics of the periodicity-to-noise ratio (PNR) and end-to-end (e2e) accuracy. The experiments demonstrate that the sensor placement is a vital factor, and the bedside is an optimal choice considering both accuracy and ease of deployment (2.65 bpm error at 80 percentile), also consistent among four typical sleep postures. We also observe that, a proper range bin selection method can improve the PNR by 2 dB at 75-percentile, and e2e accuracy by 0.9 bpm at 80-percentile. Both amplitude and phase data have comparable e2e accuracy, while phase is more sensitive to motions thus suitable for nighttime movement detection. Based on these discoveries, we develop a few simple practical guidelines useful for the community to achieve high quality, longitudinal home- based overnight respiration monitoring. 
    more » « less