Distances on hills look farther than distances on flat ground: Evidence from converging measures
More Like this
-
Abstract Riemann surfaces are among the simplest and most basic geometric objects. They appear as key players in many branches of physics, mathematics, and other sciences. Despite their widespread significance, how to compute distances between pairs of points on compact Riemann surfaces is surprisingly unknown, unless the surface is a sphere or a torus. This is because on higher-genus surfaces, the distance formula involves an infimum over infinitely many terms, so it cannot be evaluated in practice. Here we derive a computable distance formula for a broad class of Riemann surfaces. The formula reduces the infimum to a minimum over an explicit set consisting of finitely many terms. We also develop a distance computation algorithm, which cannot be expressed as a formula, but which is more computationally efficient on surfaces with high genuses. We illustrate both the formula and the algorithm in application to generalized Bolza surfaces, which are a particular class of highly symmetric compact Riemann surfaces of any genus greater than 1.more » « less
-
null (Ed.)Global sensitivity analysis aims at quantifying and ranking the relative contribution of all the uncertain inputs of a mathematical model that impact the uncertainty in the output of that model, for any input-output mapping. Motivated by the limitations of the well-established Sobol' indices which are variance-based, there has been an interest in the development of non-moment-based global sensitivity metrics. This paper presents two complementary classes of metrics (one of which is a generalization of an already existing metric in the literature) which are based on the statistical distances between probability distributions rather than statistical moments. To alleviate the large computational cost associated with Monte Carlo sampling of the input-output model to estimate probability distributions, polynomial chaos surrogate models are proposed to be used. The surrogate models in conjunction with sparse quadrature-based rules, such as conjugate unscented transforms, permit efficient calculation of the proposed global sensitivity measures. Three benchmark sensitivity analysis examples are used to illustrate the proposed approach.more » « less
-
At the core of understanding dynamical systems is the ability to maintain and control the systems behavior that includes notions of robustness, heterogeneity, and/or regime-shift detection. Recently, to explore such functional properties, a convenient representation has been to model such dynamical systems as a weighted graph consisting of a finite, but very large number of interacting agents. This said, there exists very limited relevant statistical theory that is able cope with real-life data, i.e., how does perform analysis and/or statistics over a “family” of networks as opposed to a specific network or network-to-network variation. Here, we are interested in the analysis of network families whereby each network represents a “point” on an underlying statistical manifold. To do so, we explore the Riemannian structure of the tensor manifold developed by Pennec previously applied to Diffusion Tensor Imaging (DTI) towards the problem of network analysis. In particular, while this note focuses on Pennec definition of “geodesics” amongst a family of networks, we show how it lays the foundation for future work for developing measures of network robustness for regime-shift detection. We conclude with experiments highlighting the proposed distance on synthetic networks and an application towards biological (stem-cell) systems.more » « less
-
Aiswarya, C; Mehta, Ruta; Roy, Subhajit (Ed.)The problem of computing distances of error-correcting codes is fundamental in both the classical and quantum settings. While hardness for the classical version of these problems has been known for some time (in both the exact and approximate settings), it was only recently that Kapshikar and Kundu showed these problems are also hard in the quantum setting. As our first main result, we reprove this using arguably simpler arguments based on hypergraph product codes. In particular, we get a direct reduction to CSS codes, the most commonly used type of quantum code, from the minimum distance problem for classical linear codes. Our second set of results considers the distance of a graph state, which is a key parameter for quantum codes obtained via the codeword stabilized formalism. We show that it is NP-hard to compute/approximate the distance of a graph state when the adjacency matrix of the graph is the input. In fact, we show this is true even if we only consider X-type errors of a graph state. Our techniques moreover imply an interesting classical consequence: the hardness of computing or approximating the distance of classical codes with rate equal to 1/2. One of the main motivations of the present work is a question raised by Kapshikar and Kundu concerning the NP-hardness of approximation when there is an additive error proportional to a quantum code’s length. We show that no such hardness can hold for hypergraph product codes. These observations suggest the possibility of a new kind of square root barrier.more » « less
An official website of the United States government

