skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Decentralized Stochastic Control of Distributed Energy Resources
We consider the decentralized control of radial distribution systems with controllable photovoltaic inverters and energy storage resources. For such systems, we investigate the problem of designing fully decentralized controllers that minimize the expected cost of balancing demand, while guaranteeing the satisfaction of individual resource and distribution system voltage constraints. Employing a linear approximation of the branch flow model, we formulate this problem as the design of a decentralized disturbance-feedback controller that minimizes the expected value of a convex quadratic cost function, subject to robust convex quadratic constraints on the system state and input. As such problems are, in general, computationally intractable, we derive a tractable inner approximation to this decentralized control problem, which enables the efficient computation of an affine control policy via the solution of a finite-dimensional conic program. As affine policies are, in general, suboptimal for the family of systems considered, we provide an efficient method to bound their suboptimality via the optimal solution of another finite-dimensional conic program. A case study of a 12 kV radial distribution system demonstrates that decentralized affine controllers can perform close to optimal.  more » « less
Award ID(s):
1632124
PAR ID:
10043032
Author(s) / Creator(s):
;
Date Published:
Journal Name:
IEEE Transactions on Power Systems
ISSN:
0885-8950
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the decentralized control of radial distribution systems with controllable photovoltaic inverters and storage devices. For such systems, we consider the problem of designing controllers that minimize the expected cost of meeting demand, while respecting distribution system and resource constraints. Employing a linear approximation of the branch flow model, we formulate this problem as the design of a decentralized disturbance-feedback controller that minimizes the expected value of a convex quadratic cost function, subject to convex quadratic constraints on the state and input. As such problems are, in general, computationally intractable, we derive an inner approximation to this decentralized control problem, which enables the efficient computation of an affine control policy via the solution of a conic program. As affine policies are, in general, suboptimal for the systems considered, we provide an efficient method to bound their suboptimality via the solution of another conic program. A case study of a 12 kV radial distribution feeder demonstrates that decentralized affine controllers can perform close to optimal. 
    more » « less
  2. We consider a multi-agent linear quadratic optimal control problem. Due to communication constraints, the agents are required to quantize their local state measurements before communicating them to the rest of the team, thus resulting in a decentralized information structure. The optimal controllers are to be synthesized under this decentralized and quantized information structure. The agents are given a set of quantizers with varying quantization resolutions—higher resolution incurs higher communication cost and vice versa. The team must optimally select the quantizer to prioritize agents with ‘highquality’ information for optimizing the control performance under communication constraints. We show that there exist a sepatation between the optimal solution to the control problem and the choice of the optimal quantizer. We show that the optimal controllers are linear and the optimal selection of the quantizers can be determined by solving a linear program. 
    more » « less
  3. Abstract We investigate a P 1 P_{1} finite element method for an elliptic distributed optimal control problem with pointwise state constraints and a state equation that includes advective/convective and reactive terms.The convergence of this method can be established for general polygonal/polyhedral domains that are not necessarily convex.The discrete problem is a strictly convex quadratic program with box constraints that can be solved efficiently by a primal-dual active set algorithm. 
    more » « less
  4. In this paper, we address a finite-horizon stochastic optimal control problem with covariance assignment and input energy constraints for discrete-time stochastic linear systems with partial state information. In our approach, we consider separation-based control policies that correspond to sequences of control laws that are affine functions of either the complete history of the output estimation errors, that is, the differences between the actual output measurements and their corresponding estimated outputs produced by a discrete-time Kalman filter, or a truncation of the same history. This particular feedback parametrization allows us to associate the stochastic optimal control problem with a tractable semidefinite (convex) program. We argue that the proposed procedure for the reduction of the stochastic optimal control problem to a convex program has significant advantages in terms of improved scalability and tractability over the approaches proposed in the relevant literature. 
    more » « less
  5. Newly, there has been significant research interest in the exact solution of the AC optimal power flow (AC-OPF) problem. A semideflnite relaxation solves many OPF problems globally. However, the real problem exists in which the semidefinite relaxation fails to yield the global solution. The appropriation of relaxation for AC-OPF depends on the success or unfulflllment of the SDP relaxation. This paper demonstrates a quadratic AC-OPF problem with a single negative eigenvalue in objective function subject to linear and conic constraints. The proposed solution method for AC-OPF model covers the classical AC economic dispatch problem that is known to be NP-hard. In this paper, by combining successive linear conic optimization (SLCO), convex relaxation and line search technique, we present a global algorithm for AC-OPF which can locate a globally optimal solution to the underlying AC-OPF within given tolerance of global optimum solution via solving linear conic optimization problems. The proposed algorithm is examined on modified IEEE 6-bus test system. The promising numerical results are described. 
    more » « less