skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Introductory lecture: atmospheric chemistry in the Anthropocene
The term “Anthropocene” was coined by Professor Paul Crutzen in 2000 to describe an unprecedented era in which anthropogenic activities are impacting planet Earth on a global scale. Greatly increased emissions into the atmosphere, reflecting the advent of the Industrial Revolution, have caused significant changes in both the lower and upper atmosphere. Atmospheric reactions of the anthropogenic emissions and of those with biogenic compounds have significant impacts on human health, visibility, climate and weather. Two activities that have had particularly large impacts on the troposphere are fossil fuel combustion and agriculture, both associated with a burgeoning population. Emissions are also changing due to alterations in land use. This paper describes some of the tropospheric chemistry associated with the Anthropocene, with emphasis on areas having large uncertainties. These include heterogeneous chemistry such as those of oxides of nitrogen and the neonicotinoid pesticides, reactions at liquid interfaces, organic oxidations and particle formation, the role of sulfur compounds in the Anthropocene and biogenic–anthropogenic interactions. A clear and quantitative understanding of the connections between emissions, reactions, deposition and atmospheric composition is central to developing appropriate cost-effective strategies for minimizing the impacts of anthropogenic activities. The evolving nature of emissions in the Anthropocene places atmospheric chemistry at the fulcrum of determining human health and welfare in the future.  more » « less
Award ID(s):
1207112 1404233 1443140 1337080 1647386
PAR ID:
10043187
Author(s) / Creator(s):
Date Published:
Journal Name:
Faraday Discuss.
Volume:
200
ISSN:
1359-6640
Page Range / eLocation ID:
11 to 58
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract. Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models. 
    more » « less
  2. Abstract. Nitrogen-containing organic compounds, which may be directly emitted into the atmosphere or which may form via reactions with prevalent reactive nitrogen species (e.g., NH3, NOx, NO3), have important but uncertaineffects on climate and human health. Using gas and liquid chromatographywith soft ionization and high-resolution mass spectrometry, we performed amolecular-level speciation of functionalized organic compounds at a coastal site on the Long Island Sound in summer (during the 2018 Long Island Sound Tropospheric Ozone Study – LISTOS – campaign) and winter. This region often experiences poor air quality due to theemissions of reactive anthropogenic, biogenic, and marine-derived compoundsand their chemical transformation products. We observed a range offunctionalized compounds containing oxygen, nitrogen, and/or sulfur atomsresulting from these direct emissions and chemical transformations,including photochemical and aqueous-phase processing that was more pronounced in summer and winter, respectively. In both summer and winter, nitrogen-containing organic aerosols dominated the observed distribution offunctionalized particle-phase species ionized by our analytical techniques,with 85 % and 68 % of total measured ion abundance containing a nitrogenatom, respectively. Nitrogen-containing particles included reduced nitrogen functional groups (e.g., amines, imines, azoles) and common NOz contributors (e.g., organonitrates). Reduced nitrogen functional groups observed in the particle phase were frequently paired with oxygen-containing groups elsewhere on the molecule, and their prevalence often rivaled that of oxidized nitrogen groups detected by our methods. Supplemental gas-phasemeasurements, collected on adsorptive samplers and analyzed with a novelliquid chromatography-based method, suggest that gas-phase reduced nitrogen compounds are possible contributing precursors to the observed nitrogen-containing particles. Altogether, this work highlights theprevalence of reduced nitrogen-containing compounds in the less-studied northeastern US and potentially in other regions with similar anthropogenic, biogenic, and marine source signatures. 
    more » « less
  3. Abstract. Emissions from natural sources are driven by various external stimuli such as sunlight, temperature, and soil moisture. Once biogenic volatile organic compounds (BVOCs) are emitted into the atmosphere, they rapidly react with atmospheric oxidants, which has significant impacts on ozone and aerosol budgets. However, diurnal, seasonal, and interannual variability in these species are poorly captured in emissions models due to a lack of long-term, chemically speciated measurements. Therefore, increasing the monitoring of these emissions will improve the modeling of ozone and secondary organic aerosol concentrations. Using 2 years of speciated hourly BVOC data collected at the Virginia Forest Research Lab (VFRL) in Fluvanna County, Virginia, USA, we examine how minor changes in the composition of monoterpenes between seasons are found to have profound impacts on ozone and OH reactivity. The concentrations of a range of BVOCs in the summer were found to have two different diurnal profiles, which, we demonstrate, appear to be driven by light-dependent versus light-independent emissions. Factor analysis was used to separate the two observed diurnal profiles and determine the contribution from each emission type. Highly reactive BVOCs were found to have a large influence on atmospheric reactivity in the summer, particularly during the daytime. These findings reveal the need to monitor species with high atmospheric reactivity, even though they have low concentrations, to more accurately capture their emission trends in models. 
    more » « less
  4. Accurate estimates of biomass burning (BB) emissions are of great importance worldwide due to the impacts of these emissions on human health, ecosystems, air quality, and climate. Atmospheric modeling efforts to represent these impacts require BB emissions as a key input. This paper is presented by the Biomass Burning Uncertainty: Reactions, Emissions and Dynamics (BBURNED) activity of the International Global Atmospheric Chemistry project and largely based on a workshop held in November 2023. The paper reviews 9 of the BB emissions datasets widely used by the atmospheric chemistry community, all of which rely heavily on Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations of fires scheduled to be discontinued at the end of 2025. In this time of transition away from MODIS to new fire observations, such as those from the Visible Infrared Imaging Radiometer Suite (VIIRS) satellite instruments, we summarize the contemporary status of BB emissions estimation and provide recommendations on future developments. Development of global BB emissions datasets depends on vegetation datasets, emission factors, and assumptions of fire persistence and phase, all of which are highly uncertain with high degrees of variability and complexity and are continually evolving areas of research. As a result, BB emissions datasets can have differences on the order of factor 2–3, and no single dataset stands out as the best for all regions, species, and times. We summarize the methodologies and differences between BB emissions datasets. The workshop identified 5 key recommendations for future research directions for estimating BB emissions and quantifying the associated uncertainties: development and uptake of satellite burned area products from VIIRS and other instruments; mapping of fine scale heterogeneity in fuel type and condition; identification of spurious signal detections and information gaps in satellite fire radiative power products; regional modeling studies and comparison against existing datasets; and representation of the diurnal cycle and plume rise in BB emissions. 
    more » « less
  5. Abstract Reductions in anthropogenic emissions have drawn increasing attention to the role of the biosphere in O3production chemistry in U.S. cities. We report the results of chemical transport model sensitivity simulations exploring the relative impacts of biogenic isoprene and soil nitrogen oxides (NOx) emissions on O3and its temporal variability. We compare scenarios with high and low anthropogenic NOx emissions representing the reductions that have occurred in recent decades. As expected, summertime O3concentrations become less sensitive to perturbations in biogenic isoprene emissions as anthropogenic NOx emissions decline. However, we demonstrate for the first time that across policy relevant O3nonattainment areas of the United States, O3becomes more sensitive to perturbations in soil NOx emissions than to identical perturbations in isoprene emissions. We show that interannual variability in soil NOx emissions may now have larger impacts on interannual O3variability than isoprene emissions in many areas where the latter would have dominated in the recent past. 
    more » « less