Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3bridgmanite (FA50) with the highest Fe3+‐Al3+coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yields
Motivated by the complex structure and properties of giant unit cell intermetallic compounds, a new isostructural Fe analogue of the Dy117Co57Sn112structure type was synthesized. Single crystals of Dy122Fe55Sn101were grown at 1260 °C via a Dy–Fe eutectoid flux. The Fe analogue also adopts the space group
- Award ID(s):
- 1700030
- NSF-PAR ID:
- 10046257
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Zeitschrift für anorganische und allgemeine Chemie
- Volume:
- 643
- Issue:
- 23
- ISSN:
- 0044-2313
- Page Range / eLocation ID:
- p. 2038-2044
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract V 0 = 172.1(4) Å3,K 0 = 229(4) GPa withK 0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+cations exchanged with Al3+and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle. -
Abstract Iron nitrides are possible constituents of the cores of Earth and other terrestrial planets. Pressure‐induced magnetic changes in iron nitrides and effects on compressibility remain poorly understood. Here we report synchrotron X‐ray emission spectroscopy (XES) and X‐ray diffraction (XRD) results for ε‐Fe7N3and γ′‐Fe4N up to 60 GPa at 300 K. The XES spectra reveal completion of high‐ to low‐spin transition in ε‐Fe7N3and γ′‐Fe4N at 43 and 34 GPa, respectively. The completion of the spin transition induces stiffening in bulk modulus of ε‐Fe7N3by 22% at ~40 GPa, but has no resolvable effect on the compression behavior of γ′‐Fe4N. Fitting pressure‐volume data to the Birch‐Murnaghan equation of state yields
V 0 = 83.29 ± 0.03 (Å3),K 0 = 232 ± 9 GPa,K 0′ = 4.1 ± 0.5 for nonmagnetic ε‐Fe7N3above the spin transition completion pressure, andV 0 = 54.82 ± 0.02 (Å3),K 0 = 152 ± 2 GPa,K 0′ = 4.0 ± 0.1 for γ′‐Fe4N over the studied pressure range. By reexamining evidence for spin transition and effects on compressibility of other candidate components of terrestrial planet cores, Fe3S, Fe3P, Fe7C3, and Fe3C based on previous XES and XRD measurements, we located the completion of high‐ to low‐spin transition at ~67, 38, 50, and 30 GPa at 300 K, respectively. The completion of spin transitions of Fe3S, Fe3P, and Fe3C induces elastic stiffening, whereas that of Fe7C3induces elastic softening. Changes in compressibility at completion of spin transitions in iron‐light element alloys may influence the properties of Earth's and planetary cores. -
Abstract The structure of Cs3RESi6O15, where RE=Dy–Lu, Y, In, is unusual in that it contains octahedrally coordinated rare‐earth ions; their relative orientation dictates the structure, as they rotate about the
c ‐axis supported by the cyclic Si6O15framework. The repeat unit of the rotation is eight units generating a very long (ca. 57 Å) unit cell axis. This unusual repeat unit is created by the structural flexibility of the hexasilicate ring, which is in turn affected by the size of the rare earth ion as well as the size of alkali ion residing within the silicate layers. Previous work showed for the smaller Sc3+ion, the rotation of the octahedra is not sufficient to achieve closure at an integral repeat unit and an incommensurate structure results. The products are prepared as large, high quality single crystals using a high‐temperature (650 °C) hydrothermal method with CsOH and F−mineralizers. The presence of fluoride is essential to the formation of the product. -
Abstract In this paper, we discuss the occurrence of liebermannite (
IMA 2013‐128),KA lSi3O8, a new, shock‐generated, high‐pressure tetragonal hollandite‐type structure silicate mineral, in the Zagami basaltic shergottite meteorite. Liebermannite crystallizes in space groupI 4/m withZ = 2, cell dimensions ofa =c =USA . -
Abstract We report a theoretical investigation of effects of Mn and Co substitution in the transition metal sites of the kagomé-lattice ferromagnet, Fe3Sn2. Herein, hole- and electron-doping effects of Fe3Sn2have been studied by density-functional theory calculations on the parent phase and on the substituted structural models of Fe3−
x Mx Sn2(M = Mn, Co;x = 0.5, 1.0). All optimized structures favor the ferromagnetic ground state. Analysis of the electronic density of states (DOS) and band structure plots reveals that the hole (electron) doping leads to a progressive decrease (increase) in the magnetic moment per Fe atom and per unit cell overall. The high DOS is retained nearby the Fermi level in the case of both Mn and Co substitutions. The electron doping with Co results in the loss of nodal band degeneracies, while in the case of hole doping with Mn emergent nodal band degeneracies and flatbands initially are suppressed in Fe2.5Mn0.5Sn2but re-emerge in Fe2MnSn2. These results provide key insights into potential modifications of intriguing coupling between electronic and spin degrees of freedom observed in Fe3Sn2.