Approximation is a technique that optimizes the balance between application outcome quality and its resource usage. Trading quality for performance has been investigated for single application scenarios, but not for environments where multiple approximate applications may run concurrently on the same machine, interfering with each other by sharing machine resources. Applying existing, single application techniques to this multi-programming environment may lead to configuration space size explosion, or result in poor overall application quality outcomes. Our new RAPID-M system is the first cross-application con-figuration management framework. It reduces the problem size by clustering configurations of individual applications into local"similarity buckets". The global cross-applications configuration selection is based on these local bucket spaces. RAPID-M dynamically assigns buckets to applications such that overall quality is maximized while respecting individual application cost budgets. Once assigned a bucket, reconfigurations within buckets may be performed locally with minimal impact on global selections. Experimental results using six configurable applications show that even large configuration spaces of complex applications can be clustered into a small number of buckets, resulting in search space size reductions of up to 9 orders of magnitude for our six applications. RAPID-M constructs performance cost models with an average prediction error of ≤3%. For our application execution traces, RAPID-M dynamically selects configurations that lower the budget violation rate by 33.9% with an average budget exceeding rate of 6.6% as compared to other possible approaches. RAPID-M successfully finishes 22.75% more executions which translates to a 1.52X global output quality increase under high system loads. The overhead of RAPID-M is within ≤1% of application execution times.
more »
« less
Conducting reproducible research with Umbrella: Tracking, creating, and preserving execution environments
Publishing scientific results without the detailed execution environments describing how the results were collected makes it difficult or even impossible for the reader to reproduce the work. However, the configurations of the execution environ- ments are too complex to be described easily by authors. To solve this problem, we propose a framework facilitating the conduct of reproducible research by tracking, creating, and preserving the comprehensive execution environments with Umbrella. The framework includes a lightweight, persistent and deployable execution environment specification, an execution engine which creates the specified execution environments, and an archiver which archives an execution environment into persistent storage services like Amazon S3 and Open Science Framework (OSF). The execution engine utilizes sandbox techniques like virtual machines (VMs), Linux containers and user-space tracers, to cre- ate an execution environment, and allows common dependencies like base OS images to be shared by sandboxes for different applications. We evaluate our framework by utilizing it to reproduce three scientific applications from epidemiology, scene rendering, and high energy physics. We evaluate the time and space overhead of reproducing these applications, and the effectiveness of the chosen archive unit and mounting mechanism for allowing different applications to share dependencies. Our results show that these applications can be reproduced using different sandbox techniques successfully and efficiently, even through the overhead and performance slightly vary.
more »
« less
- Award ID(s):
- 1642409
- PAR ID:
- 10047188
- Date Published:
- Journal Name:
- IEEE Conference on e-Science
- Page Range / eLocation ID:
- 91 to 100
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Short time-to-localize and time-to-fix for production bugs is extremely important for any 24x7 service-oriented application (SOA). Debugging buggy behavior in deployed applications is hard, as it requires careful reproduction of a similar environment and workload. Prior approaches for automatically reproducing production failures do not scale to large SOA systems. Our key insight is that for many failures in SOA systems (e.g., many semantic and performance bugs), a failure can automatically be reproduced solely by relaying network packets to replicas of suspect services, an insight that we validated through a manual study of 16 real bugs across five different systems. This paper presents Parikshan, an application monitoring framework that leverages user-space virtualization and network proxy technologies to provide a sandbox “debug” environment. In this “debug” environment, developers are free to attach debuggers and analysis tools without impacting performance or correctness of the production environment. In comparison to existing monitoring solutions that can slow down production applications, Parikshan allows application monitoring at significantly lower overhead.more » « less
-
An increasing number of distributed applications operate by dispatching function invocations across the nodes of a distributed system. To operate correctly, the code and data dependencies of the function must be distributed along with the invocations in some way. When translating applications to work on large scale distributed systems, managing these dependencies becomes challenging: delivery must be scalable to thousands of nodes; the dependencies must be consistent across the system; and the method must be usable by an unprivileged developer. As a solution, in this paper we present PONCHO, which is a lightweight Python based toolkit which allows users to discover, package, and deploy dependencies as an integral part of distributed applications. PONCHO encapsulates a set of commands to be executed within an environment. PONCHO offers a lightweight solution to create and manage environments increasing the portability of scientific applications as well as reproducibility. In this paper, we evaluate PONCHO with real-world applications in the fields of physics, computational chemistry, and hyperparameter optimization, We observe the challenges that arise when creating and distributing an environment and measure the overheads that emerge as a result.more » « less
-
Malicious software (malware) poses a significant threat to the security of our networks and users. In the ever-evolving malware landscape, Excel 4.0 Office macros (XL4) have recently become an important attack vector. These macros are often hidden within apparently legitimate documents and under several layers of obfuscation. As such, they are difficult to analyze using static analysis techniques. Moreover, the analysis in a dynamic analysis environment (a sandbox) is challenging because the macros execute correctly only under specific environmental conditions that are not always easy to create. This paper presents SYMBEXCEL, a novel solution that leverages symbolic execution to deobfuscate and analyze Excel 4.0 macros automatically. Our approach proceeds in three stages: (1) The malicious document is parsed and loaded in memory; (2) Our symbolic execution engine executes the XL4 formulas; and (3) Our Engine concretizes any symbolic values encountered during the symbolic exploration, therefore evaluating the execution of each macro under a broad range of (meaningful) environment configurations. SYMBEXCEL significantly outperforms existing deobfuscation tools, allowing us to reliably extract Indicators of Compromise (IoCs) and other critical forensics information. Our experiments demonstrate the effectiveness of our approach, especially in deobfuscating novel malicious documents that make heavy use of environment variables and are often not identified by commercial anti-virus software.more » « less
-
Computing as a whole suffers from a crisis of reproducibility. Programs executed in one context are aston- ishingly hard to reproduce in another context, resulting in wasted effort by people and general distrust of results produced by computer. The root of the problem lies in the fact that every program has implicit dependencies on data and execution environment which are rarely understood by the end user. To address this problem, we present PRUNE, the Preserving Run Environment. In PRUNE, every task to be executed is wrapped in a functional interface and coupled with a strictly defined environment. The task is then executed by PRUNE rather than the user to ensure reproducibility. As a scientific workflow evolves in PRUNE, a growing but immutable tree of derived data is created. The provenance of every item in the system can be precisely described, facilitating sharing and modification between collaborating researchers, along with efficient management of limited storage space. We present the user interface and the initial prototype of PRUNE, and demonstrate its application in matching records and comparing surnames in U.S. Censusesmore » « less
An official website of the United States government

