skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Imaging-to-Simulation Framework for Improving Disaster Preparedness of Construction Projects and Neighboring Communities
Unstructured construction sites including incomplete structures and unsecured resources (e.g., materials, equipment, and temporary facilities) are among the most vulnerable environments to windstorms such as hurricanes. Wind-induced cascading damages cause substantial losses, disruption, and considerable schedule delays in construction projects. Moreover, this would negatively affect neighboring buildings and interdependent infrastructures (e.g., electric power transmission or transportation systems), which triggers serious economic losses in our community. Nonetheless, prior works on disaster management mainly focused on post-disaster assessment and reconstruction process of built environments, and thus predicting potential risks associated with expected disasters for proactive preparedness remain largely unknown. This paper presents a new Imaging-to-Simulation framework that can uncover potential risks of wind-induced cascading damages to construction projects and their negative impacts on neighboring communities. The outcomes are expected to benefit our society as it will enhance current windstorm preparedness and mitigation plans, which ultimately promote public safety, property loss reduction, insurance cost reduction, and raise awareness of ‘Culture of Preparedness’ for disasters.  more » « less
Award ID(s):
1635378
PAR ID:
10047748
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ASCE International Workshop on Computing in Civil Engineering 2017
Page Range / eLocation ID:
230 to 237
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Critical infrastructure and public utility systems are often severely damaged by natural disasters like hurricanes. Based on a framework of household disaster resilience, this paper focuses on the role of utility disruption on household-level recovery in the context of Hurricane Sandy. Using data collected through a two-stage household survey, it first confirms that the sample selection bias is not present, thus the responses can be estimated sequentially. Second, it quantitatively examines factors contributing to hurricane-induced property damages and household-level recovery. The finding suggests that respondents who suffered from a longer period of utility disruptions (e.g., electricity, water, gas, phone/cell phone, public transportation) are more likely to incur monetary losses and have more difficulty in recovering. Effective preparedness activities (e.g., installing window protections, having an electric generator) can have positive results in reducing adverse shocks. Respondents with past hurricane experiences and higher educational attainments are found to be more resilient compared to others. Finally, the paper discusses the implications of the findings on effective preparation and mitigation strategies for future disasters. 
    more » « less
  2. Post-disaster reconnaissance is vital for assessing the impact of a natural disaster on the built environment and informing improvements in design, construction, risk mitigation, and our understanding of extreme events. The data obtained from reconnaissance can also be utilized to improve disaster recovery planning by maximizing resource efficiency, minimizing waste, and promoting resilience in future disasters. This paper aims to investigate existing reconnaissance reports and datasets to identify the factors that impact the reusability of buildings post-disaster and to recommend strategies that align with circular economy goals. The study adopted a three-step research methodology to attain the proposed goals: (1) thematic analysis was used to evaluate types of damages reported in the reconnaissance reports; (2) a supervised machine-learning algorithm was employed to analyze reconnaissance datasets; and (3) a concept map was developed based on interviews of 109 stakeholders in disaster-prone communities to recommend strategies to adopt circular economy practices post-disaster. The study results highlight the recurring risks of damage to different parts of the building and how circular economy resilience practices like deconstruction can minimize waste and maximize resource efficiency during post-disaster recovery. The findings of the study promote a more regenerative economy to build resilience to the challenges of future extreme weather events. 
    more » « less
  3. Bui, Tung X (Ed.)
    This study gauges the preparedness levels of individuals (younger and older) across hazards and investigates their willingness to use emerging technology for disaster preparedness. Older adults are among the most vulnerable during disasters and more likely to be displaced. As climate change contributes to the increased frequency, intensity, and scale of disasters, the number of areas impacted by multiple hazards has also increased. In December 2023, a nationwide survey with over 1,000 respondents was launched. The results indicate a variation in the perception of preparedness across hazards, at the individual level. Additionally, most respondents would use emerging technology to help them improve their disaster preparedness, including smart speakers, phones, mobile appliances, cars, wearable devices, robots, and virtual reality devices. Findings indicate that older adults may be willing to use emerging technology that they are uncomfortable with for disaster preparedness, necessitating training, exercises, and qualitative research to understand how and why. 
    more » « less
  4. The objective of this paper is to model and examine the impacts of different levels of infrastructure service losses caused by disasters on the households’ well-being residing in a community. An agent-based simulation model was developed to capture complex mechanisms underlying households’ tolerance for the service outages, including household characteristics (e.g., sociodemographic, social capital, resources, and previous disaster experience), physical infrastructure attributes, and extreme disruptive events. The rules governing these mechanisms were determined using empirical survey data collected from the residents of Harris County affected by Hurricane Harvey as well as the existing models for power outages and service restoration times. The analysis results highlighted the spatial diffusion of service risks among households living in affected areas in disasters. The proposed simulation model will provide utility agencies with an analytical tool for prioritization of infrastructure service restoration actions to effectively mitigate the societal impacts of service losses. 
    more » « less
  5. More than 1.6 billion people worldwide live in informally constructed houses, many of which are reinforced with concrete. Patterns of past earthquake damage suggest that these homes have significant seismic vulnerabilities, endangering their occupants. The characteristics of these houses vary widely with local building practices. In addition, these vulnerabilities are potentially exacerbated by incremental construction practices and building practices that address wind/flood risk in multi-hazard environments. Yet, despite the ubiquity of this type of construction, there have not been efforts to systematically assess the seismic risks to support risk-reducing design and construction strategies. In this study, we developed a method to assess the seismic collapse capacity of informally constructed housing that accounts for local building practices and materials, quantifying the effect of building characteristics on collapse risk. We exercise the method to assess seismic performance of housing in the US. Caribbean Island of Puerto Rico, which has high seismic hazard and experiences frequent hurricanes. This analysis showed that heavy construction, often due to the addition of a second story, and the presence of an open ground story leads to a high collapse risk. Severely corroded steel bars could also worsen performance. Although houses with infill performed better than those with an open ground story, confined masonry construction techniques produced a major reduction in collapse risk when compared to infilled or open-frame construction. Infill construction with partial height walls performed very poorly. Well-built reinforced concrete column jackets and the addition of infill in open first-story bays can reduce the greater risks of openground- story houses. These findings, which are quantified in the results portion of this article, are intended to support the development of design and construction recommendations for safer housing.There is an urgent need to improve community capacity to recover more effectively after disasters through safer design and construction practices. To do this, training programs need to foster an improved understanding of shelter design and construction to withstand future wind and earthquake events. This project analyzed informal builders’ perceptions of housing safety in Puerto Rico (responding to 2017's Hurricane Maria and the 2019-2020 earthquake swarm) and homeowner’s perceptions of housing safety in Philippines (responding to 2013's Typhoon Haiyan and 2017's Ormoc earthquake) to: (1) assess local understanding of shelter safety in multiple hazards, including causal factors influencing this understanding, through a household survey in the Philippines and a survey to informal contractors in Puerto Rico; (2) assess the expected performance of various post-disaster shelter typologies to quantify safety during future earthquake and wind events using performance-based engineering methods, developing a rapid screening tool that can be used in design or evaluation; (3) identify conflicts between perceived and assessed safety of shelter, and why these conflicts exist, by comparing engineering assessments with local perceptions; and (4) create a communication design for organizations assisting with training for safer housing construction. 
    more » « less