Computing optimal transport distances such as the earth mover's distance is a fundamental problem in machine learning, statistics, and computer vision. Despite the recent introduction of several algorithms with good empirical performance, it is unknown whether general optimal transport distances can be approximated in near-linear time. This paper demonstrates that this ambitious goal is in fact achieved by Cuturi's Sinkhorn Distances. This result relies on a new analysis of Sinkhorn iterations, which also directly suggests a new greedy coordinate descent algorithm Greenkhorn with the same theoretical guarantees. Numerical simulations illustrate that Greenkhorn significantly outperforms the classical Sinkhorn algorithm in practice.
more »
« less
PIVE: Per-Iteration Visualization Environment for Real-Time Interactions with Dimension Reduction and Clustering
One of the key advantages of visual analytics is its capability to leverage both humans's visual perception and the power of computing. A big obstacle in integrating machine learning with visual analytics is its high computing cost. To tackle this problem, this paper presents PIVE (Per-Iteration Visualization Environment) that supports real-time interactive visualization with machine learning. By immediately visualizing the intermediate results from algorithm iterations, PIVE enables users to quickly grasp insights and interact with the intermediate output, which then affects subsequent algorithm iterations. In addition, we propose a widely-applicable interaction methodology that allows efficient incorporation of user feedback into virtually any iterative computational method without introducing additional computational cost. We demonstrate the application of PIVE for various dimension reduction algorithms such as multidimensional scaling and t-SNE and clustering and topic modeling algorithms such as k-means and latent Dirichlet allocation.
more »
« less
- PAR ID:
- 10048630
- Date Published:
- Journal Name:
- Proceedings of the ... AAAI Conference on Artificial Intelligence
- ISSN:
- 2374-3468
- Page Range / eLocation ID:
- 1001--1009
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
In the field of visualization, understanding users’ analytical reasoning is important for evaluating the effectiveness of visualization applications. Several studies have been conducted to capture and analyze user interactions to comprehend this reasoning process. However, few have successfully linked these interactions to users’ reasoning processes. This paper introduces an approach that addresses the limitation by correlating semantic user interactions with analysis decisions using an interactive wire transaction analysis system and a visual state transition matrix, both designed as visual analytics applications. The system enables interactive analysis for evaluating financial fraud in wire transactions. It also allows mapping captured user interactions and analytical decisions back onto the visualization to reveal their decision differences. The visual state transition matrix further aids in understanding users’ analytical flows, revealing their decision-making processes. Classification machine learning algorithms are applied to evaluate the effectiveness of our approach in understanding users’ analytical reasoning process by connecting the captured semantic user interactions to their decisions (i.e., suspicious, not suspicious, and inconclusive) on wire transactions. With the algorithms, an average of 72% accuracy is determined to classify the semantic user interactions. For classifying individual decisions, the average accuracy is 70%. Notably, the accuracy for classifying ‘inconclusive’ decisions is 83%. Overall, the proposed approach improves the understanding of users’ analytical decisions and provides a robust method for evaluating user interactions in visualization tools.more » « less
-
Abstract Large machine learning models are revolutionary technologies of artificial intelligence whose bottlenecks include huge computational expenses, power, and time used both in the pre-training and fine-tuning process. In this work, we show that fault-tolerant quantum computing could possibly provide provably efficient resolutions for generic (stochastic) gradient descent algorithms, scaling as$${{{{{{{\mathcal{O}}}}}}}}({T}^{2}\times {{{{{{{\rm{polylog}}}}}}}}(n))$$ , wherenis the size of the models andTis the number of iterations in the training, as long as the models are both sufficiently dissipative and sparse, with small learning rates. Based on earlier efficient quantum algorithms for dissipative differential equations, we find and prove that similar algorithms work for (stochastic) gradient descent, the primary algorithm for machine learning. In practice, we benchmark instances of large machine learning models from 7 million to 103 million parameters. We find that, in the context of sparse training, a quantum enhancement is possible at the early stage of learning after model pruning, motivating a sparse parameter download and re-upload scheme. Our work shows solidly that fault-tolerant quantum algorithms could potentially contribute to most state-of-the-art, large-scale machine-learning problems.more » « less
-
Automatic differentiation (AutoDiff) in machine learning is largely restricted to expressions used for neural networks (NN), with the depth rarely exceeding a few tens of layers. Compared to NN, numerical simulations typically involve iterative algorithms like time steppers that lead to millions of iterations. Even for modest-sized models, this may yield infeasible memory requirements when applying the adjoint method, also called backpropagation, to time-dependent problems. In this situation, checkpointing algorithms provide a trade-off between recomputation and storage. This paper presents the package Checkpointing.jl that leverages expression transformations in the programming language Julia and the package ChainRules.jl to automatically and transparently transform loop iterations into differentiated loops. The user may choose between various checkpointing algorithm schemes and storage devices. We describe the unique design of Checkpointing.jl and demonstrate its features on an automatically differentiated MPI implementation of Burgers’ equation on the Polaris cluster at the Argonne Leadership Computing Facility.more » « less
-
Progressive visual analytics enable data scientists to efficiently explore large datasets and examine progressive results with low latency. Most progressive visualization frameworks use a progressive query processing module that controls the quality of the results and then feeds these results into a visualization module. The goal is to avoid poor-quality progressive results which could mislead data scientists. This method misses some optimization opportunities as it improves the quality of the intermediate result while ignoring how this result affects the final visualization. This work presents a work-in-progress quality-aware progressive visualization input control component, named QPV. The key idea of the proposed framework is to integrate the visualization module into the progressive query results so that the quality control takes into account the final visualization. With limited computational resources, QPV solves an optimization problem to allocate resources and alleviate the misleading effects in the progressive plots.more » « less
An official website of the United States government

