skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fungal Genomes and Insights into the Evolution of the Kingdom.
The kingdom Fungi comprises species that inhabit nearly all ecosystems. Fungi exist as both free-living and symbiotic unicellular and multicellular organisms with diverse morphologies. The genomes of fungi encode genes that enable them to thrive in diverse environments, invade plant and animal cells, and participate in nutrient cycling in terrestrial and aquatic ecosystems. The continuously expanding databases of fungal genome sequences have been generated by individual and large-scale efforts such as Génolevures, Broad Institute's Fungal Genome Initiative, and the 1000 Fungal Genomes Project (http://1000.fungalgenomes.org). These efforts have produced a catalog of fungal genes and genomic organization. The genomic datasets can be utilized to better understand how fungi have adapted to their lifestyles and ecological niches. Large datasets of fungal genomic and transcriptomic data have enabled the use of novel methodologies and improved the study of fungal evolution from a molecular sequence perspective. Combined with microscopes, petri dishes, and woodland forays, genome sequencing supports bioinformatics and comparative genomics approaches as important tools in the study of the biology and evolution of fungi.  more » « less
Award ID(s):
1441715 1557110 1429826
PAR ID:
10048789
Author(s) / Creator(s):
Date Published:
Journal Name:
Microbiology spectrum
Volume:
5
Issue:
4
ISSN:
2165-0497
Page Range / eLocation ID:
FUNK-0055-2016
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The first genome sequenced of a eukaryotic organism was for Saccharomyces cerevisiae, as reported in 1996, but it was more than 10 years before any of the zygomycete fungi, which are the early-diverging terrestrial fungi currently placed in the phyla Mucoromycota and Zoopagomycota, were sequenced. The genome for Rhizopus delemar was completed in 2008; currently, more than 1000 zygomycete genomes have been sequenced. Genomic data from these early-diverging terrestrial fungi revealed deep phylogenetic separation of the two major clades—primarily plant—associated saprotrophic and mycorrhizal Mucoromycota versus the primarily mycoparasitic or animal-associated parasites and commensals in the Zoopagomycota. Genomic studies provide many valuable insights into how these fungi evolved in response to the challenges of living on land, including adaptations to sensing light and gravity, development of hyphal growth, and co-existence with the first terrestrial plants. Genome sequence data have facilitated studies of genome architecture, including a history of genome duplications and horizontal gene transfer events, distribution and organization of mating type loci, rDNA genes and transposable elements, methylation processes, and genes useful for various industrial applications. Pathogenicity genes and specialized secondary metabolites have also been detected in soil saprobes and pathogenic fungi. Novel endosymbiotic bacteria and viruses have been discovered during several zygomycete genome projects. Overall, genomic information has helped to resolve a plethora of research questions, from the placement of zygomycetes on the evolutionary tree of life and in natural ecosystems, to the applied biotechnological and medical questions. 
    more » « less
  2. Advances in genomics and transcriptomics accompanying the rapid accumulation of omics data have provided new tools that have transformed and expanded the traditional concepts of model fungi. Evolutionary genomics and transcriptomics have flourished with the use of classical and newer fungal models that facilitate the study of diverse topics encompassing fungal biology and development. Technological advances have also created the opportunity to obtain and mine large datasets. One such continuously growing dataset is that of the Sordariomycetes, which exhibit a richness of species, ecological diversity, economic importance, and a profound research history on amenable models. Currently, 3,574 species of this class have been sequenced, comprising nearly one-third of the available ascomycete genomes. Among these genomes, multiple representatives of the model genera Fusarium , Neurospora , and Trichoderma are present. In this review, we examine recently published studies and data on the Sordariomycetes that have contributed novel insights to the field of fungal evolution via integrative analyses of the genetic, pathogenic, and other biological characteristics of the fungi. Some of these studies applied ancestral state analysis of gene expression among divergent lineages to infer regulatory network models, identify key genetic elements in fungal sexual development, and investigate the regulation of conidial germination and secondary metabolism. Such multispecies investigations address challenges in the study of fungal evolutionary genomics derived from studies that are often based on limited model genomes and that primarily focus on the aspects of biology driven by knowledge drawn from a few model species. Rapidly accumulating information and expanding capabilities for systems biological analysis of Big Data are setting the stage for the expansion of the concept of model systems from unitary taxonomic species/genera to inclusive clusters of well-studied models that can facilitate both the in-depth study of specific lineages and also investigation of trait diversity across lineages. The Sordariomycetes class, in particular, offers abundant omics data and a large and active global research community. As such, the Sordariomycetes can form a core omics clade, providing a blueprint for the expansion of our knowledge of evolution at the genomic scale in the exciting era of Big Data and artificial intelligence, and serving as a reference for the future analysis of different taxonomic levels within the fungal kingdom. 
    more » « less
  3. ABSTRACT Rapid responses to changes in incident light are critical to the guidance of behavior and development in most species. Phytochrome light receptors in particular play key roles in bacterial physiology and plant development, but their functions and regulation are less well understood in fungi. Nevertheless, genome-wide expression measurements provide key information that can guide experiments that reveal how genes respond to environmental signals and clarify their role in development. We performed functional genomic and phenotypic analyses of the two phytochromes in Neurospora crassa , a fungal model adapted to a postfire environment that experiences dramatically variable light conditions. Expression of phy-1 and phy-2 was low in early sexual development and in the case of phy-2 increased in late sexual development. Under light stimulation, strains with the phytochromes deleted exhibited increased expression of sexual development-related genes. Moreover, under red light, the phy-2 knockout strain commenced sexual development early. In the evolution of phytochromes within ascomycetes, at least two duplications have occurred, and the faster-evolving phy-2 gene has frequently been lost. Additionally, the three key cysteine sites that are critical for bacterial and plant phytochrome function are not conserved within fungal phy-2 homologs. Through the action of phytochromes, transitions between asexual and sexual reproduction are modulated by light level and light quality, presumably as an adaptation for fast asexual growth and initiation of sexual reproduction of N. crassa in exposed postfire ecosystems. IMPORTANCE Environmental signals, including light, play critical roles in regulating fungal growth and pathogenicity, and balance of asexual and sexual reproduction is critical in fungal pathogens’ incidence, virulence, and distribution. Red light sensing by phytochromes is well known to play critical roles in bacterial physiology and plant development. Homologs of phytochromes were first discovered in the fungal model Neurospora crassa and then subsequently in diverse other fungi, including many plant pathogens. Our study investigated the evolution of red light sensors in ascomycetes and confirmed—using the model fungus Neurospora crassa —their roles in modulating the asexual-sexual reproduction balance in fungi. Our findings also provide a key insight into one of the most poorly understood aspects of fungal biology, suggesting that further study of the function of phytochromes in fungi is critical to reveal the genetic basis of the asexual-sexual switch responsible for fungal growth and distribution, including diverse and destructive plant pathogens. 
    more » « less
  4. Ouangraoua, Aida (Ed.)
    Abstract Previous evolutionary reconstructions have concluded that early eukaryotic ancestors including both the last common ancestor of eukaryotes and of all fungi had intron-rich genomes. By contrast, some extant eukaryotes have few introns, underscoring the complex histories of intron–exon structures, and raising the question as to why these few introns are retained. Here, we have used recently available fungal genomes to address a variety of questions related to intron evolution. Evolutionary reconstruction of intron presence and absence using 263 diverse fungal species supports the idea that massive intron reduction through intron loss has occurred in multiple clades. The intron densities estimated in various fungal ancestors differ from zero to 7.6 introns per 1 kb of protein-coding sequence. Massive intron loss has occurred not only in microsporidian parasites and saccharomycetous yeasts, but also in diverse smuts and allies. To investigate the roles of the remaining introns in highly-reduced species, we have searched for their special characteristics in eight intron-poor fungi. Notably, the introns of ribosome-associated genes RPL7 and NOG2 have conserved positions; both intron-containing genes encoding snoRNAs. Furthermore, both the proteins and snoRNAs are involved in ribosome biogenesis, suggesting that the expression of the protein-coding genes and noncoding snoRNAs may be functionally coordinated. Indeed, these introns are also conserved in three-quarters of fungi species. Our study shows that fungal introns have a complex evolutionary history and underappreciated roles in gene expression. 
    more » « less
  5. Fungi shape the diversity of life. Characterizing the evolution of fungi is critical to understanding symbiotic associations across kingdoms. In this study, we investigate the genomic and metabolomic diversity of the genus Escovopsis , a specialized parasite of fungus-growing ant gardens. Based on 25 high-quality draft genomes, we show that Escovopsis forms a monophyletic group arising from a mycoparasitic fungal ancestor 61.82 million years ago (Mya). Across the evolutionary history of fungus-growing ants, the dates of origin of most clades of Escovopsis correspond to the dates of origin of the fungus-growing ants whose gardens they parasitize. We reveal that genome reduction, determined by both genomic sequencing and flow cytometry, is a consistent feature across the genus Escovopsis, largely occurring in coding regions, specifically in the form of gene loss and reductions in copy numbers of genes. All functional gene categories have reduced copy numbers, but resistance and virulence genes maintain functional diversity. Biosynthetic gene clusters (BGCs) contribute to phylogenetic differences among Escovopsis spp., and sister taxa in the Hypocreaceae. The phylogenetic patterns of co-diversification among BGCs are similarly exhibited across mass spectrometry analyses of the metabolomes of Escovopsis and their sister taxa. Taken together, our results indicate that Escovopsis spp. evolved unique genomic repertoires to specialize on the fungus-growing ant-microbe symbiosis. 
    more » « less