null
(Ed.)
In a wireless network with dynamic spectrum sharing, tracking temporal spectrum holes across a wide spectrum band is a challenging task. We consider a scenario in which the spectrum is divided into a large number of bands or channels, each of which has the potential to provide dynamic spectrum access opportunities. The occupancy times of each band by primary users are generally non-exponentially distributed. We develop an approach to determine and parameterize a small selected subset of the bands with good spectrum access opportunities, using limited computational resources under noisy measurements. We model the noisy measurements of the received signal in each band as a bivariate Markov modulated Gaussian process, which can be viewed as a continuous-time bivariate Markov chain observed through Gaussian noise. The underlying bivariate Markov process allows for the characterization of non-exponentially distributed state sojourn times. The proposed scheme combines an online expectation-maximization algorithm for parameter estimation with a computing budget allocation algorithm. Observation time is allocated across the bands to determine the subset of G out of G frequency bands with the largest mean idle times for dynamic spectrum access and at the same time to obtain accurate parameter estimates for this subset of bands. Our simulation results show that when channel holding times are non-exponential, the proposed scheme achieves a substantial improvement in the probability of correct selection of the best subset of bands compared to an approach based on a (univariate) Markov modulated Gaussian process model.
more »
« less
An official website of the United States government

