skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Partitioning assimilatory nitrogen uptake in streams: an analysis of stable isotope tracer additions across continents
Headwater streams remove, transform, and store inorganic nitrogen (N) delivered from surrounding watersheds, but excessive N inputs from human activity can saturate removal capacity. Most research has focused on quantifying N removal from the water column over short periods and in individual reaches, and these ecosystem-scale measurements suggest that assimilatory N uptake accounts for most N removal. However, cross-system comparisons addressing the relative role of particular biota responsible for incorporating inorganic N into biomass are lacking. Here we assess the importance of different primary uptake compartments on reach-scale ammonium (NH4 +-N) uptake and storage across a wide range of streams varying in abundance of biota and local environmental factors. We analyzed data from 17 15N-NH4 + tracer addition experiments globally, and found that assimilatory N uptake by autotrophic compartments (i.e., epilithic biofilm, filamentous algae, bryophytes/macrophytes) was higher but more variable than for heterotrophic microorganisms colonizing detrital organic matter (i.e., leaves, small wood, and fine particles). Autotrophic compartments played a disproportionate role in N uptake relative to their biomass, although uptake rates were similar when we rescaled heterotrophic assimilatory N uptake associated only with live microbial biomass. Assimilatory NH4 +-N uptake, either estimated as removal from the water column or from the sum uptake of all individual compartments, was four times higher in open- than in closed-canopy streams. Using Bayesian Model Averaging, we found that canopy cover and gross primary production (GPP) controlled autotrophic assimilatory N uptake while ecosystem respiration (ER) was more important for the heterotrophic contribution. The ratio of autotrophic to heterotrophic N storage was positively correlated with metabolism (GPP:ER), which was also higher in open- than in closed-canopy streams. Our analysis shows riparian canopy cover influences the relative abundance of different biotic uptake compartments and thus GPP:ER. As such, the simple categorical variable of canopy cover explained differences in assimilatory N uptake among streams at the reach scale, as well as the relative roles of autotrophs and heterotrophs in N storage. Finally, this synthesis links cumulative N uptake by stream biota to reach-scale N demand and provides  more » « less
Award ID(s):
1637459 1027253 1832042
PAR ID:
10050083
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; « less
Date Published:
Journal Name:
Ecological Monographs
Volume:
0
Issue:
0
ISSN:
0012-9615
Page Range / eLocation ID:
1-19
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Autotrophic and heterotrophic microbes in stream biofilms dominate biogeochemical cycling and rely on nutrient and energy resources for growth and productivity. In the boreal forest, variation in these resources can originate from permafrost distribution and controls competition for nutrients between stream autotrophs and heterotrophs. We investigated which resources control nutrient uptake and metabolism in headwater stream biofilms of subarctic Alaska, USA, and how resource availability affects competition for inorganic nutrients. We hypothesized that the competitive outcome between autotrophs and heterotrophs for inorganic nutrients would be dependent on availability of organic C, or inorganic nutrients (N and P). To test our hypotheses, we measured resource limitation at the patch and reach scales along a permafrost gradient in interior Alaska. At the patch scale, nutrient diffusing substrata revealed that, secondary to light, N and P were colimiting to autotrophic growth, whereas C was primarily limiting to heterotrophic respiration. In the presence of labile C, heterotrophs exhibited a larger response to nutrient enrichment and outcompeted autotrophs for inorganic nutrients. At the reach scale, light availability had the largest influence on nutrient uptake, but inorganic nutrients were also important. The positive response to increased nutrient and C availability at the patch scale suggests that the predicted increase in exports into fluvial networks with permafrost degradation will alter biofilm structure and function. Ultimately, biofilm communities will shift to more heterotroph-dominated patches if heterotrophs outcompete autotrophs for inorganic nutrients. As permafrost thaws and nutrients and organic C mobilize into streams, nutrient uptake dynamics and competition within biofilms will be altered, affecting nutrient use and export. 
    more » « less
  2. Stream bryophytes (mosses and liverworts) are widely recognized as important macroinvertebrate habitats, but their overall role in the stream ecosystem, particularly in nutrient cycling, remains understudied. Hubbard Brook Experimental Forest in New Hampshire, USA, contains some of the most extensively researched streams in the world, yet few studies mention their bryophytes. Perhaps this is because early estimates place bryophyte coverage in these streams at an insignificant 2%. However, data from 2019 show that contemporary coverage ranges from 4 to 40% among streams. To investigate how stream bryophyte cover may be changing over time and influencing stream nutrient stocks, we conducted field surveys, measured the mass of organic and inorganic bryophyte contents, and quantified nutrient uptake with bottle incubations of bryophyte mats. This study marks a novel attempt to map stream bryophyte coverage with estimates of C, P, and N stocks and fluxes. From our 2022 field surveys, we found that median bryophyte coverage varied across streams in the same catchment (0–41.4%) and shifted from just 3 y prior. We estimate that these bryophyte mats stored between 14 and 414 g of organic matter per m2 of stream in the form of live biomass and captured particulates. Within 12 h of light incubation, 35 out of 36 bryophyte clump samples sorbed peak historical water-column concentrations of PO43– as measured in the Hubbard Brook stream chemistry record. In Bear Brook, our scaled estimate of bryophyte mat NO3– uptake (2.3 g N/y) constitutes a substantial portion of previously estimated whole-stream NO3– uptake (12 g N/y). Cumulatively, our data demonstrate that bryophytes and their associated mineral substrates and biota—known as the bryosphere—are crucial in facilitating headwater stream nutrient cycling. These bryospheres may contribute significantly to interannual variability in stream nutrient concentrations within nutrient-poor streams, especially in climate-sensitive regions. 
    more » « less
  3. Stream bryophytes (mosses and liverworts) are widely recognized as important macroinvertebrate habitats, but their overall role in the stream ecosystem, particularly in nutrient cycling, remains understudied. Hubbard Brook Experimental Forest contains some of the most extensively researched streams in the world, yet few studies mention their bryophytes. Perhaps this is because early estimates place stream bryophyte coverage at an insignificant 2%. However, data from 2019 show that contemporary coverage ranges from 4%–40% among streams. To investigate how stream bryophyte cover may be changing over time and influencing stream nutrient stocks, we conducted field surveys, measured organic and inorganic mass contents of bryophytes, and quantified nutrient uptake with bottle incubations of bryophyte mats. This study marks a novel attempt to map stream bryophyte coverage with estimates of carbon, phosphorus, and nitrogen stocks and fluxes. From our 2022 field surveys, we found that median bryophyte coverage can vary greatly across streams in the same catchment (0%–41.4%) and can also shift from just three years prior. We estimate that these bryophyte mats store between 14–414 g of organic matter per m2 of stream in the form of live biomass and captured particulates. Out of 36 bryophyte clump samples, 35 sorbed peak historical water column concentrations of PO43- measured within the Hubbard Brook stream chemistry record within 12 hours of light incubation. In Bear Brook, our scaled estimate of bryophyte mat nitrate uptake (2.3 g N y-1) constitutes a substantial portion of previously estimated whole-stream nitrate uptake (12 g N y-1). Cumulatively, our data demonstrates that bryophytes and their associated mineral substrates and biota—known as the bryosphere—are crucial in facilitating headwater stream nutrient cycling. These bryospheres may contribute significantly to interannual variability in stream nutrient concentrations within nutrient-poor streams, especially in climate-sensitive regions. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  4. Beisner, Beatrix E (Ed.)
    Abstract Within aquatic ecosystems, heterotrophic, mixotrophic and autotrophic plankton are entangled in a complex network of competitive, predatory and mutualistic interactions. “Browning,” the increase of colored dissolved organic matter (CDOM) from terrestrial catchments, can affect this network of interactions by simultaneously decreasing light availability and increasing organic carbon and nutrients supplies. Here, we introduce a conceptual, process-based numerical model to investigate the effects of browning on a microbial food web consisting of heterotrophic bacterioplankton, bacterivorous phago-mixoplankton, autotrophic phytoplankton and the resources light, inorganic phosphorus and DOM. Additionally, we explore how the investment in autotrophic vs. phagotrophic resource acquisition influences mixoplankton performance. Several model predictions are in broad agreement with empirical observations under increasing CDOM supply, including increased bacterial biomass and inorganic phosphorous, decreased light penetration, the potential for a unimodal phytoplankton biomass response and a local minimum in mixoplankton biomass. Our results also suggest that mixoplankton with a high investment in phototrophy perform best in many conditions but that phosphorous acquisition via prey is crucial under high light-low nutrient conditions. Overall, our model analyses suggest that responses to altered CDOM supply are largely determined by systematic changes in the relative importance of nutrient vs. energy limitation of each plankton group. 
    more » « less
  5. Abstract Determining how streams develop naturally, particularly the ecological role of newly developed riparian canopy cover, is essential to understanding the factors that structure new stream communities and provides valuable information for restoring highly disturbed ecosystems. However, attempts to understand primary succession in riverine ecosystems have been hindered by a lack of data owing to the infrequent formation of new rivers on the landscape. In the present study, we used five streams formed following the 1980 eruption of Mount St. Helens (WA, USA) to examine the influence of canopy cover development on algal and benthic macroinvertebrate assemblages, biomass, and organic matter processing. Newly established closed canopy reaches had less available light, but no significant differences in algal biomass or macroinvertebrate assemblages compared to open canopy reaches. Instead, algal and macroinvertebrate communities were structured mainly by hydrologic differences among watersheds. In contrast, organic matter processing rates were sensitive to canopy cover development, and rates were faster under closed canopies, especially in late summer or after terrestrial preconditioning. After 40 years of stream and riparian primary successional development, canopy cover strongly influences ecosystem function, but aquatic organism assembly was more influenced by physio-chemical and hydrologic variation. Our findings provide insight into the development of in-stream assemblages and ecosystem functions, which is also relevant to efforts to address major disturbances to stream channels, such as volcanic eruptions, floods, forest fires, and clear-cut logging. 
    more » « less