skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Robust Linear Regression Against Training Data Poisoning
The e ectiveness of supervised learning techniques has made them ubiquitous in research and practice. In high-dimensional settings, supervised learning commonly relies on dimensionality reduction to improve performance and identify the most important factors in predicting outcomes. However, the economic importance of learn- ing has made it a natural target for adversarial manipulation of training data, which we term poisoning attacks. Prior approaches to dealing with robust supervised learning rely on strong assumptions about the nature of the feature matrix, such as feature independence and sub-Gaussian noise with low variance. We propose an inte- grated method for robust regression that relaxes these assumptions, assuming only that the feature matrix can be well approximated by a low-rank matrix. Our techniques integrate improved robust low-rank matrix approximation and robust principle component regression, and yield strong performance guarantees. Moreover, we experimentally show that our methods signi cantly outper- form state-of-the-art robust regression both in running time and prediction error.  more » « less
Award ID(s):
1649972 1526860 1640624
PAR ID:
10050104
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Workshop on AI and Security
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present an algorithmic framework for quantum-inspired classical algorithms on close-to-low-rank matrices, generalizing the series of results started by Tang’s breakthrough quantum-inspired algorithm for recommendation systems [STOC’19]. Motivated by quantum linear algebra algorithms and the quantum singular value transformation (SVT) framework of Gilyén et al. [STOC’19], we develop classical algorithms for SVT that run in time independent of input dimension, under suitable quantum-inspired sampling assumptions. Our results give compelling evidence that in the corresponding QRAM data structure input model, quantum SVT does not yield exponential quantum speedups. Since the quantum SVT framework generalizes essentially all known techniques for quantum linear algebra, our results, combined with sampling lemmas from previous work, suffice to generalize all prior results about dequantizing quantum machine learning algorithms. In particular, our classical SVT framework recovers and often improves the dequantization results on recommendation systems, principal component analysis, supervised clustering, support vector machines, low-rank regression, and semidefinite program solving. We also give additional dequantization results on low-rank Hamiltonian simulation and discriminant analysis. Our improvements come from identifying the key feature of the quantum-inspired input model that is at the core of all prior quantum-inspired results: ℓ2-norm sampling can approximate matrix products in time independent of their dimension. We reduce all our main results to this fact, making our exposition concise, self-contained, and intuitive.

     
    more » « less
  2. In order to deal with the curse of dimensionality in reinforcement learning (RL), it is common practice to make parametric assumptions where values or policies are functions of some low dimensional feature space. This work focuses on the representation learning question: how can we learn such features? Under the assumption that the underlying (unknown) dynamics correspond to a low rank transition matrix, we show how the representation learning question is related to a particular non-linear matrix decomposition problem. Structurally, we make precise connections between these low rank MDPs and latent variable models, showing how they significantly generalize prior formulations, such as block MDPs, for representation learning in RL. Algorithmically, we develop FLAMBE, which engages in exploration and representation learning for provably efficient RL in low rank transition models. On a technical level, our analysis eliminates reachability assumptions that appear in prior results on the simpler block MDP model and may be of independent interest. 
    more » « less
  3. Modern neural networks have the capacity to overfit noisy labels frequently found in real-world datasets. Although great progress has been made, existing techniques are limited in providing theoretical guarantees for the performance of the neural networks trained with noisy labels. Here we propose a novel approach with strong theoretical guarantees for robust training of deep networks trained with noisy labels. The key idea behind our method is to select weighted subsets (coresets) of clean data points that provide an approximately low-rank Jacobian matrix. We then prove that gradient descent applied to the subsets do not overfit the noisy labels. Our extensive experiments corroborate our theory and demonstrate that deep networks trained on our subsets achieve a significantly superior performance compared to state-of-the art, e.g., 6% increase in accuracy on CIFAR-10 with 80% noisy labels, and 7% increase in accuracy on mini Webvision. 
    more » « less
  4. Supervised matrix factorization (SMF) is a classical machine learning method that simultaneously seeks feature extraction and classification tasks, which are not necessarily a priori aligned objectives. Our goal is to use SMF to learn low-rank latent factors that offer interpretable, data-reconstructive, and class-discriminative features, addressing challenges posed by high-dimensional data. Training SMF model involves solving a nonconvex and possibly constrained optimization with at least three blocks of parameters. Known algorithms are either heuristic or provide weak convergence guarantees for special cases. In this paper, we provide a novel framework that ‘lifts’ SMF as a low-rank matrix estimation problem in a combined factor space and propose an efficient algorithm that provably converges exponentially fast to a global minimizer of the objective with arbitrary initialization under mild assumptions. Our framework applies to a wide range of SMF-type problems for multi-class classification with auxiliary features. To showcase an application, we demonstrate that our algorithm successfully identified well-known cancer-associated gene groups for various cancers. 
    more » « less
  5. Supervised matrix factorization (SMF) is a classical machine learning method that simultaneously seeks feature extraction and classification tasks, which are not necessarily a priori aligned objectives. Our goal is to use SMF to learn low-rank latent factors that offer interpretable, data-reconstructive, and class-discriminative features, addressing challenges posed by high-dimensional data. Training SMF model involves solving a nonconvex and possibly constrained optimization with at least three blocks of parameters. Known algorithms are either heuristic or provide weak convergence guarantees for special cases. In this paper, we provide a novel framework that ‘lifts’ SMF as a low-rank matrix estimation problem in a combined factor space and propose an efficient algorithm that provably converges exponentially fast to a global minimizer of the objective with arbitrary initialization under mild assumptions. Our framework applies to a wide range of SMF-type problems for multi-class classification with auxiliary features. To showcase an application, we demonstrate that our algorithm successfully identified well-known cancer-associated gene groups for various cancers. 
    more » « less