skip to main content


Search for: All records

Award ID contains: 1526860

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Extensive literature exists studying decentralized coordination and consensus, with considerable attention devoted to ensuring robustness to faults and attacks. However, most of the latter literature assumes that non-malicious agents follow simple stylized rules. In reality, decentralized protocols often involve humans, and understanding how people coordinate in adversarial settings is an open problem. We initiate a study of this problem, starting with a human subjects investigation of human coordination on networks in the presence of adversarial agents, and subsequently using the resulting data to bootstrap the development of a credible agent-based model of adversarial decentralized coordination. In human subjects experiments, we observe that while adversarial nodes can successfully prevent consensus, the ability to communicate can significantly improve robustness, with the impact particularly significant in scale-free networks. On the other hand, and contrary to typical stylized models of behavior, we show that the existence of trusted nodes has limited utility. Next, we use the data collected in human subject experiments to develop a data-driven agent-based model of adversarial coordination. We show that this model successfully reproduces observed behavior in experiments, is robust to small errors in individual agent models, and illustrate its utility by using it to explore the impact of optimizing network location of trusted and adversarial nodes. 
    more » « less
  2. The integrity of democratic elections depends on voters’ access to accurate information. However, modern media environments, which are dominated by social media, provide malicious actors with unprecedented ability to manipulate elections via misinformation, such as fake news. We study a zerosum game between an attacker, who attempts to subvert an election by propagating a fake new story or other misinformation over a set of advertising channels, and a defender who attempts to limit the attacker’s impact. Computing an equilibrium in this game is challenging as even the pure strategy sets of players are exponential. Nevertheless, we give provable polynomial-time approximation algorithms for computing the defender’s minimax optimal strategy across a range of settings, encompassing different population structures as well as models of the information available to each player. Experimental results confirm that our algorithms provide nearoptimal defender strategies and showcase variations in the difficulty of defending elections depending on the resources and knowledge available to the defender. 
    more » « less
  3. Constructive election control considers the problem of an adversary who seeks to sway the outcome of an electoral process in order to ensure that their favored candidate wins. We consider the computational problem of constructive election control via issue selection. In this problem, a party decides which political issues to focus on to ensure victory for the favored candidate. We also consider a variation in which the goal is to maximize the number of voters supporting the favored candidate. We present strong negative results, showing, for example, that the latter problem is inapproximable for any constant factor. On the positive side, we show that when issues are binary, the problem becomes tractable in several cases, and admits a 2-approximation in the two-candidate case. Finally, we develop integer programming and heuristic methods for these problems. 
    more » « less
  4. The spread of unwanted or malicious content through social me- dia has become a major challenge. Traditional examples of this include social network spam, but an important new concern is the propagation of fake news through social media. A common ap- proach for mitigating this problem is by using standard statistical classi cation to distinguish malicious (e.g., fake news) instances from benign (e.g., actual news stories). However, such an approach ignores the fact that malicious instances propagate through the network, which is consequential both in quantifying consequences (e.g., fake news di using through the network), and capturing de- tection redundancy (bad content can be detected at di erent nodes). An additional concern is evasion attacks, whereby the generators of malicious instances modify the nature of these to escape detection. We model this problem as a Stackelberg game between the defender who is choosing parameters of the detection model, and an attacker, who is choosing both the node at which to initiate malicious spread, and the nature of malicious entities. We develop a novel bi-level programming approach for this problem, as well as a novel solution approach based on implicit function gradients, and experimentally demonstrate the advantage of our approach over alternatives which ignore network structure. 
    more » « less
  5. Election control considers the problem of an adversary who attempts to tamper with a voting process, in order to either ensure that their favored candidate wins (constructive control) or another candidate loses (destructive control). As online social networks have become significant sources of information for potential voters, a new tool in an attacker’s arsenal is to effect control by harnessing social influence, for example, by spreading fake news and other forms of misinformation through online social media. We consider the computational problem of election control via social influence, studying the conditions under which finding good adversarial strategies is computationally feasible. We consider two objectives for the adversary in both the constructive and destructive control settings: probability and margin of victory (POV and MOV, respectively). We present several strong negative results, showing, for example, that the problem of maximizing POV is inapproximable for any constant factor. On the other hand, we present approxima- tion algorithms which provide somewhat weaker approximation guarantees, such as bicriteria approximations for the POV objective and constant-factor approximations for MOV. Finally, we present mixed integer programming formulations for these problems. Ex- perimental results show that our approximation algorithms often find near-optimal control strategies, indicating that election control through social influence is a salient threat to election integrity. 
    more » « less