skip to main content

Title: The future of ground magnetometer arrays in support of space weather monitoring and research.
A community workshop was held in Greenbelt, Maryland on 5-6 May 2016 to discuss recommendations for the future of ground magnetometer array research in space physics. The community reviewed findings contained in the 2016 Geospace Portfolio Review of the Geospace Section of the Division of Atmospheric and Geospace Science of the National Science Foundation, and discussed the present state of ground magnetometer arrays and possible pathways for a more optimal, robust, and effective organization and scientific use of these ground arrays. This paper summarizes the report of that workshop to NSF [Engebretson and Zesta, 2017] as well as conclusions from two follow up meetings. It describes the current state of U.S.-funded ground magnetometer arrays and summarizes community recommendations for changes in both organizational and funding structures. It also outlines a variety of new and/or augmented regional and global data products and visualizations that can be facilitated by increased collaboration among arrays. Such products will enhance the value of ground-based magnetometer data to the community’s effort for understanding of Earth’s space environment and space weather effects.
Authors:
;
Award ID(s):
1639587
Publication Date:
NSF-PAR ID:
10050109
Journal Name:
Space weather
Volume:
15
Page Range or eLocation-ID:
1433-1441
ISSN:
1542-7390
Sponsoring Org:
National Science Foundation
More Like this
  1. Dunlop, M. W. ; Lühr, H. (Ed.)
    Polar ionospheric electrodynamics plays an important role in the Sun–Earth connection chain, acting as one of the major driving forces of the upper atmosphere and providing us with a means to probe physical processes in the distant magnetosphere. Accurate specification of the constantly changing conditions of high-latitude ionospheric electrodynamics has long been of paramount interest to the geospace science community. The Assimilative Mapping of Ionospheric Electrodynamics procedure, developed with an emphasis on inverting ground-based magnetometer observations for historical reasons, has long been used in the geospace science community as a way to obtain complete maps of high-latitude ionospheric electrodynamics bymore »overcoming the limitations of a given geospace monitoring system. This Chapter presents recent technical progress on inverse and data assimilation procedures motivated primarily by availability of regular monitoring of high-latitude electrodynamics by space-borne instruments. The method overview describes how electrodynamic state variables are represented with polar-cap spherical harmonics and how coefficients are estimated from the point of view of the Bayesian inferential framework. Some examples of the recent applications to analysis of SuperDARN plasma drift, Iridium, and DMSP magnetic fields, as well as DMSP auroral particle precipitation data are included to demonstrate the method.« less
  2. Abstract The Electron Loss and Fields Investigation with a Spatio-Temporal Ambiguity-Resolving option (ELFIN-STAR, or heretoforth simply: ELFIN) mission comprises two identical 3-Unit (3U) CubeSats on a polar (∼93 ∘ inclination), nearly circular, low-Earth (∼450 km altitude) orbit. Launched on September 15, 2018, ELFIN is expected to have a >2.5 year lifetime. Its primary science objective is to resolve the mechanism of storm-time relativistic electron precipitation, for which electromagnetic ion cyclotron (EMIC) waves are a prime candidate. From its ionospheric vantage point, ELFIN uses its unique pitch-angle-resolving capability to determine whether measured relativistic electron pitch-angle and energy spectra within the loss conemore »bear the characteristic signatures of scattering by EMIC waves or whether such scattering may be due to other processes. Pairing identical ELFIN satellites with slowly-variable along-track separation allows disambiguation of spatial and temporal evolution of the precipitation over minutes-to-tens-of-minutes timescales, faster than the orbit period of a single low-altitude satellite (T orbit ∼ 90 min). Each satellite carries an energetic particle detector for electrons (EPDE) that measures 50 keV to 5 MeV electrons with $\Delta $ Δ E/E < 40% and a fluxgate magnetometer (FGM) on a ∼72 cm boom that measures magnetic field waves (e.g., EMIC waves) in the range from DC to 5 Hz Nyquist (nominally) with <0.3 nT/sqrt(Hz) noise at 1 Hz. The spinning satellites (T spin $\,\sim $ ∼ 3 s) are equipped with magnetorquers (air coils) that permit spin-up or -down and reorientation maneuvers. Using those, the spin axis is placed normal to the orbit plane (nominally), allowing full pitch-angle resolution twice per spin. An energetic particle detector for ions (EPDI) measures 250 keV – 5 MeV ions, addressing secondary science. Funded initially by CalSpace and the University Nanosat Program, ELFIN was selected for flight with joint support from NSF and NASA between 2014 and 2018 and launched by the ELaNa XVIII program on a Delta II rocket (with IceSatII as the primary). Mission operations are currently funded by NASA. Working under experienced UCLA mentors, with advice from The Aerospace Corporation and NASA personnel, more than 250 undergraduates have matured the ELFIN implementation strategy; developed the instruments, satellite, and ground systems and operate the two satellites. ELFIN’s already high potential for cutting-edge science return is compounded by concurrent equatorial Heliophysics missions (THEMIS, Arase, Van Allen Probes, MMS) and ground stations. ELFIN’s integrated data analysis approach, rapid dissemination strategies via the SPace Environment Data Analysis System (SPEDAS), and data coordination with the Heliophysics/Geospace System Observatory (H/GSO) optimize science yield, enabling the widest community benefits. Several storm-time events have already been captured and are presented herein to demonstrate ELFIN’s data analysis methods and potential. These form the basis of on-going studies to resolve the primary mission science objective. Broad energy precipitation events, precipitation bands, and microbursts, clearly seen both at dawn and dusk, extend from tens of keV to >1 MeV. This broad energy range of precipitation indicates that multiple waves are providing scattering concurrently. Many observed events show significant backscattered fluxes, which in the past were hard to resolve by equatorial spacecraft or non-pitch-angle-resolving ionospheric missions. These observations suggest that the ionosphere plays a significant role in modifying magnetospheric electron fluxes and wave-particle interactions. Routine data captures starting in February 2020 and lasting for at least another year, approximately the remainder of the mission lifetime, are expected to provide a very rich dataset to address questions even beyond the primary mission science objective.« less
  3. This file contains three tables and one figure. Table S1 lists the institutions represented at the initial Ground Magnetometer Array Workshop. Table S2 contains information about all NSF-AGS supported and USGS ground-based magnetometer arrays as of Fall 2016 and Figure S1 is a map showing these arrays. Table S3 lists web sites serving ground magnetometer data.
  4. Forecasting ground magnetic field perturbations has been a long-standing goal of the space weather community. The availability of ground magnetic field data and its potential to be used in geomagnetically induced current studies, such as risk assessment, have resulted in several forecasting efforts over the past few decades. One particular community effort was the Geospace Environment Modeling (GEM) challenge of ground magnetic field perturbations that evaluated the predictive capacity of several empirical and first principles models at both mid- and high-latitudes in order to choose an operative model. In this work, we use three different deep learning models-a feed-forward neuralmore »network, a long short-term memory recurrent network and a convolutional neural network-to forecast the horizontal component of the ground magnetic field rate of change ( dB H / dt ) over 6 different ground magnetometer stations and to compare as directly as possible with the original GEM challenge. We find that, in general, the models are able to perform at similar levels to those obtained in the original challenge, although the performance depends heavily on the particular storm being evaluated. We then discuss the limitations of such a comparison on the basis that the original challenge was not designed with machine learning algorithms in mind.« less
  5. This paper presents observations of electromagnetic ion cyclotron (EMIC) waves from multiple data sources during the four Geospace Environment Modeling challenge events in 2013 selected by the Geospace Environment Modeling Quantitative Assessment of Radiation Belt Modeling focus group: 17 and 18 March (stormtime enhancement), 31 May to 2 June (stormtime dropout), 19 and 20 September (nonstorm enhancement), and 23–25 September (nonstorm dropout). Observations include EMIC wave data from the Van Allen Probes, Geostationary Operational Environmental Satellite, and Time History of Events and Macroscale Interactions during Substorms spacecraft in the near-equatorial magnetosphere and from several arrays of ground-based search coil magnetometersmore »worldwide, as well as localized ring current proton precipitation data from low-altitude Polar Operational Environmental Satellite spacecraft. Each of these data sets provides only limited spatial coverage, but their combination shows consistent occurrence patterns and reveals some events that would not be identified as significant using near-equatorial spacecraft alone. Relativistic and ultrarelativistic electron flux observations, phase space density data, and pitch angle distributions based on data from the Relativistic Electron-Proton Telescope and Magnetic Electron Ion Spectrometer instruments on the Van Allen Probes during these events show two cases during which EMIC waves are likely to have played an important role in causing major flux dropouts of ultrarelativistic electrons, particularly near L* ~4.0. In three other cases, identifiable smaller and more short-lived dropouts appeared, and in five other cases, these waves evidently had little or no effect.« less