In this paper, we propose a convolutional neural network (CNN) based, scenario-dependent and sensor (mobile device) adaptable hierarchical classification framework. Our proposed framework is designed to automatically categorize face data captured under various challenging conditions, before the FR algorithms (pre-processing, feature extraction and matching) are used. First, a unique multi-sensor database (using Samsung S4 Zoom, Nokia 1020, iPhone 5S and Samsung S5 phones) is collected containing face images indoors, outdoors, with yaw angle from -90 to +90 and at two different distances, i.e. 1 and 10 meters. To cope with pose variations, face detection and pose estimation algorithms are used for classifying the facial images into a frontal or a non-frontal class. Next, our proposed framework is used where tri-level hierarchical classification is performed as follows: Level 1, face images are classified based on phone type; Level 2, face images are further classified into indoor and outdoor images; and finally, Level 3 face images are classified into a close (1m) and a far, low quality, (10m) distance categories respectively. Experimental results show that classification accuracy is scenario dependent, reaching from 95 to more than 98% accuracy for level 2 and from 90 to more than 99% for level 3 classification. A set of experiments is performed indicating that, the usage of data grouping before the face matching is performed, resulted in a significantly improved rank-1 identification rate when compared to the original (all vs. all) biometric system. 
                        more » 
                        « less   
                    
                            
                            On Matching Visible to Passive Infrared Face Images Using Image Synthesis & Denoising
                        
                    
    
            Performing a direct match between images from different spectra (i.e., passive infrared and visible) is challenging because each spectrum contains different information pertaining to the subject’s face. In this work, we investigate the benefits and limitations of using synthesized visible face images from thermal ones and vice versa in cross-spectral face recognition systems. For this purpose, we propose utilizing canonical correlation analysis (CCA) and manifold learning dimensionality reduction (LLE). There are four primary contributions of this work. First, we formulate the cross-spectral heterogeneous face matching problem (visible to passive IR) using an image synthesis framework. Second, a new processed database composed of two datasets consistent of separate controlled frontal face subsets (VIS-MWIR and VIS-LWIR) is generated from the original, raw face datasets collected in three different bands (visible, MWIR and LWIR). This multi-band database is constructed using three different methods for preprocessing face images before feature extraction methods are applied. There are: (1) face detection, (2) CSU’s geometric normalization, and (3) our recommended geometric normalization method. Third, a post-synthesis image denoising methodology is applied, which helps alleviate different noise patterns present in synthesized images and improve baseline FR accuracy (i.e. before image synthesis and denoising is applied) in practical heterogeneous FR scenarios. Finally, an extensive experimental study is performed to demonstrate the feasibility and benefits of cross-spectral matching when using our image synthesis and denoising approach. Our results are also compared to a baseline commercial matcher and various academic matchers provided by the CSU’s Face Identification Evaluation System. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10053525
- Date Published:
- Journal Name:
- 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017)
- Page Range / eLocation ID:
- 904 to 911
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            With benefits of fast query speed and low storage cost, hashing-based image retrieval approaches have garnered considerable attention from the research community. In this paper, we propose a novel Error-Corrected Deep Cross Modal Hashing (CMH-ECC) method which uses a bitmap specifying the presence of certain facial attributes as an input query to retrieve relevant face images from the database. In this architecture, we generate compact hash codes using an end-to-end deep learning module, which effectively captures the inherent relationships between the face and attribute modality. We also integrate our deep learning module with forward error correction codes to further reduce the distance between different modalities of the same subject. Specifically, the properties of deep hashing and forward error correction codes are exploited to design a cross modal hashing framework with high retrieval performance. Experimental results using two standard datasets with facial attributes-image modalities indicate that our CMH-ECC face image retrieval model outperforms most of the current attribute-based face image retrieval approaches.more » « less
- 
            Energy-based models (EBMs) assign an unnormalized log probability to data samples. This functionality has a variety of applications, such as sample synthesis, data denoising, sample restoration, outlier detection, Bayesian reasoning and many more. But, the training of EBMs using standard maximum likelihood is extremely slow because it requires sampling from the model distribution. Score matching potentially alleviates this problem. In particular, denoising-score matching has been successfully used to train EBMs. Using noisy data samples with one fixed noise level, these models learn fast and yield good results in data denoising. However, demonstrations of such models in the high-quality sample synthesis of high-dimensional data were lacking. Recently, a paper showed that a generative model trained by denoising-score matching accomplishes excellent sample synthesis when trained with data samples corrupted with multiple levels of noise. Here we provide an analysis and empirical evidence showing that training with multiple noise levels is necessary when the data dimension is high. Leveraging this insight, we propose a novel EBM trained with multiscale denoising-score matching. Our model exhibits a data-generation performance comparable to state-of-the-art techniques such as GANs and sets a new baseline for EBMs. The proposed model also provides density information and performs well on an image-inpainting task.more » « less
- 
            Face sketch to digital image matching is an important challenge of face recognition that involves matching across different domains. Current research efforts have primarily focused on extracting domain invariant representations or learning a mapping from one domain to the other. In this research, we propose a novel transform learning based approach termed as DeepTransformer, which learns a transformation and mapping function between the features of two domains. The proposed formulation is independent of the input information and can be applied with any existing learned or hand-crafted feature. Since the mapping function is directional in nature, we propose two variants of DeepTransformer: (i) semi-coupled and (ii) symmetricallycoupled deep transform learning. This research also uses a novel IIIT-D Composite Sketch with Age (CSA) variations database which contains sketch images of 150 subjects along with age-separated digital photos. The performance of the proposed models is evaluated on a novel application of sketch-to-sketch matching, along with sketch-to-digital photo matching. Experimental results demonstrate the robustness of the proposed models in comparison to existing state-of-the-art sketch matching algorithms and a commercial face recognition system.more » « less
- 
            Abstract Infrared (IR) thermal imaging is receiving a great deal of attention due to its wide range of applications. Given multiple issues (like cost and availability) with the inorganic materials currently exploited for IR imaging, there is nowadays a great push of developing organic imaging materials. Carbon‐based materials are known to have significant transparency in the visible and IR regions and some are used as transparent conductors. Here, whether π‐conjugated carbon‐based materials are suitable for long‐wave (LW) and mid‐wave (MW) IR imaging applications is computationally assessed. Using density functional theory calculations, the IR‐vibrational properties of molecules from acenes to coronenes and fullerenes, and of periodic systems like graphene and carbon nanotubes are characterized. Fullerenes, graphenes, and double‐walled carbon nanotubes are found to be very attractive as they are transparent in both the LWIR and MWIR regions, a feature resulting from the absence of hydrogen atoms. Also, it is found that replacing hydrogen atoms in a molecule with deuterium or sulfur atoms can be an efficient way to improve their LWIR or MWIR transparency, respectively. For fused‐ring systems having hydrogen atoms on the periphery, designing molecules with trio CH‐units is another way to enhance the transparency in the LWIR region.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    