skip to main content


Title: USING DEEP CROSS MODAL HASHING AND ERROR CORRECTING CODES FOR IMPROVING THE EFFICIENCY OF ATTRIBUTE GUIDED FACIAL IMAGE RETRIEVAL
With benefits of fast query speed and low storage cost, hashing-based image retrieval approaches have garnered considerable attention from the research community. In this paper, we propose a novel Error-Corrected Deep Cross Modal Hashing (CMH-ECC) method which uses a bitmap specifying the presence of certain facial attributes as an input query to retrieve relevant face images from the database. In this architecture, we generate compact hash codes using an end-to-end deep learning module, which effectively captures the inherent relationships between the face and attribute modality. We also integrate our deep learning module with forward error correction codes to further reduce the distance between different modalities of the same subject. Specifically, the properties of deep hashing and forward error correction codes are exploited to design a cross modal hashing framework with high retrieval performance. Experimental results using two standard datasets with facial attributes-image modalities indicate that our CMH-ECC face image retrieval model outperforms most of the current attribute-based face image retrieval approaches.  more » « less
Award ID(s):
1650474
NSF-PAR ID:
10091241
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Global Conference on Signal and Information Processing (GlobalSIP)
Page Range / eLocation ID:
564 to 568
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce caption-guided face recognition (CGFR) as a new framework to improve the performance of commercial-off-the-shelf (COTS) face recognition (FR) systems. In contrast to combining soft biometrics (e.g., facial marks, gender, and age) with face images, in this work, we use facial descriptions provided by face examiners as a piece of auxiliary information. However, due to the heterogeneity of the modalities, improving the performance by directly fusing the textual and facial features is very challenging, as both lie in different embedding spaces. In this paper, we propose a contextual feature aggregation module (CFAM) that addresses this issue by effectively exploiting the fine-grained word-region interaction and global image-caption association. Specifically, CFAM adopts a self-attention and a cross-attention scheme for improving the intra-modality and inter-modality relationship between the image and textual features, respectively. Additionally, we design a textual feature refinement module (TFRM) that refines the textual features of the pre-trained BERT encoder by updating the contextual embeddings. This module enhances the discriminative power of textual features with a cross-modal projection loss and realigns the word and caption embeddings with visual features by incorporating a visual-semantic alignment loss. We implemented the proposed CGFR framework on two face recognition models (ArcFace and AdaFace) and evaluated its performance on the Multi-Modal CelebA-HQ dataset. Our framework significantly improves the performance of ArcFace in both 1:1 verification and 1:N identification protocol. 
    more » « less
  2. null (Ed.)
    Cross-modal retrieval aims to learn discriminative and modal-invariant features for data from different modalities. Unlike the existing methods which usually learn from the features extracted by offline networks, in this paper, we pro- pose an approach to jointly train the components of cross- modal retrieval framework with metadata, and enable the network to find optimal features. The proposed end-to-end framework is updated with three loss functions: 1) a novel cross-modal center loss to eliminate cross-modal discrepancy, 2) cross-entropy loss to maximize inter-class variations, and 3) mean-square-error loss to reduce modality variations. In particular, our proposed cross-modal center loss minimizes the distances of features from objects belonging to the same class across all modalities. Extensive experiments have been conducted on the retrieval tasks across multi-modalities including 2D image, 3D point cloud and mesh data. The proposed framework significantly outperforms the state-of-the-art methods for both cross-modal and in-domain retrieval for 3D objects on the ModelNet10 and ModelNet40 datasets. 
    more » « less
  3. Facial attribute recognition is conventionally computed from a single image. In practice, each subject may have multiple face images. Taking the eye size as an example, it should not change, but it may have different estimation in multiple images, which would make a negative impact on face recognition. Thus, how to compute these attributes corresponding to each subject rather than each single image is a profound work. To address this question, we deploy deep training for facial attributes prediction, and we explore the inconsistency issue among the attributes computed from each single image. Then, we develop two approaches to address the inconsistency issue. Experimental results show that the proposed methods can handle facial attribute estimation on either multiple still images or video frames, and can correct the incorrectly annotated labels. The experiments are conducted on two large public databases with annotations of facial attributes. 
    more » « less
  4. Face sketch-photo synthesis is a critical application in law enforcement and digital entertainment industry. Despite the significant improvements in sketch-to-photo synthesis techniques, existing methods have still serious limitations in practice, such as the need for paired data in the training phase or having no control on enforcing facial attributes over the synthesized image. In this work, we present a new framework, which is a conditional version of Cycle-GAN, conditioned on facial attributes. The proposed network forces facial attributes, such as skin and hair color, on the synthesized photo and does not need a set of aligned face-sketch pairs during its training. We evaluate the proposed network by training on two real and synthetic sketch datasets. The hand-sketch images of the FERET dataset and the color face images from the WVU Multi-modal dataset are used as an unpaired input to the proposed conditional CycleGAN with the skin color as the controlled face attribute. For more attribute guided evaluation, a synthetic sketch dataset is created from the CelebA dataset and used to evaluate the performance of the network by forcing several desired facial attributes on the synthesized faces. 
    more » « less
  5. Vision-language (VL) pre-training has recently received considerable attention. However, most existing end-to-end pre-training approaches either only aim to tackle VL tasks such as image-text retrieval, visual question answering (VQA) and image captioning that test high-level understanding of images, or only target region-level understanding for tasks such as phrase grounding and object detection. We present FIBER (Fusion-In-the-Backbone-based transformER), a new VL model architecture that can seamlessly handle both these types of tasks. Instead of having dedicated transformer layers for fusion after the uni-modal backbones, FIBER pushes multimodal fusion deep into the model by inserting cross-attention into the image and text backbones to better capture multimodal interactions. In addition, unlike previous work that is either only pre-trained on image-text data or on fine-grained data with box-level annotations, we present a two-stage pre-training strategy that uses both these kinds of data efficiently: (i) coarse-grained pre-training based on image-text data; followed by (ii) fine-grained pre-training based on image-text-box data. We conduct comprehensive experiments on a wide range of VL tasks, ranging from VQA, image captioning, and retrieval, to phrase grounding, referring expression comprehension, and object detection. Using deep multimodal fusion coupled with the two-stage pre-training, FIBER provides consistent performance improvements over strong baselines across all tasks, often outperforming methods using magnitudes more data. Code is released at https://github.com/microsoft/FIBER. 
    more » « less