skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Capacitive Enhancement Mechanisms and Design Principles of High‐Performance Graphene Oxide‐Based All‐Solid‐State Supercapacitors
Abstract Graphene oxide (GO)‐based all‐solid‐state supercapacitors (GO‐A3Ss) are superior over liquid electrolyte‐based supercapacitors and capable of being integrated on a single chip in various geometry shapes for the use of future smart wearable electronics field as a fast energy storage device, but their capacitance need to be improved. Here, a new approach has been developed for enhancing the capacitive capability of the supercapacitors through molecular dynamics simulations with the first‐principle input. A theoretical model of charge storage is developed to understand the unique capacitive enhancement mechanism and to predict the capacitance of the GO‐A3Ss, which agrees well with the experimental observations. A novel supercapacitor with GO and reduced graphene oxide (rGO) alternatively layered structures is designed based on the model, and its energy density is the highest among conventional supercapacitors using liquid electrolytes and all‐solid‐state supercapacitors using aerogels or hydrogels as the solid‐state electrolyte. Based on the predictions, two new types of high‐performance GO/rGO multilayered capacitors are proposed to meet different practical applications. The results of this work provide an approach for the design of high‐performance all‐solid‐state supercapacitors based on GO and rGO materials.  more » « less
Award ID(s):
1662288
PAR ID:
10053656
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
28
Issue:
17
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recently, graphene fibers derived from wet-spinning of graphene oxide (GO) dispersions have emerged as viable electrodes for fiber-shaped supercapacitors (FSCs) and/or batteries, wherein large surface area, high electrical conductivity, and sufficient mechanical strength/toughness are desired. However, for most fiber electrodes reported so far, compromises have to be made between energy-storage capacity and mechanical/electrical performance, whereas a graphene fiber with high capacity and sufficient toughness for direct machine weaving or knitting is yet to be developed. Inspired by the alum mordant used for natural dyes in the traditional textile dyeing industry, our research group has synthesized wet-spun GO fibers and coagulated them with different multivalent cations ( e.g. Ca 2+ , Fe 3+ , and Al 3+ ), where dramatically different fiber morphologies and properties have been observed. The first principles density functional theory has been further employed to explain the observed disparities via cation–GO binding energy calculation. When assembled into solid-state FSCs, Al 3+ -based reduced GO (rGO) fibers offer excellent stability against bending, and a specific capacitance of 148.5 mF cm −2 at 40 mV s −1 , 1.4, 4.8, and 6.8 times higher than that of the rGO fibers based on other three coagulation systems (Fe 3+ , Ca 2+ and acetic acid), respectively. The volumetric energy density of the Al 3+ -based FSC is up to 13.26 mW h cm −3 , while a high power density of 250.87 mW cm −3 is maintained. 
    more » « less
  2. The ever-growing demand for portable, bendable, twistable, and wearable microelectronics operating in a wide temperature range has stimulated an immense interest in the development of solid-state flexible energy storage devices using scalable fabrication technology. Herein, we developed additively manufactured graphene aerosol gel-based all-solid-state micro-supercapacitors (MSCs) via inkjet printing with functioning temperature in the range from −15 to +70 °C and exhibiting a super-stable and reliable electrochemical performance using interdigitated finger electrodes and PVA/H3PO4 solid-state electrolyte. The graphene aerosol gel was obtained using a scalable single step synthesis method from a gas phase precursor using a detonation process, producing a nanoscale shell type structure. The fabricated graphene aerosol gel-based solid-state MSC achieved a volumetric capacitance of 376.63 mF cm−3 (areal capacitance of 76.23 μF cm−2) at a constant current of 0.25 μA and demonstrated exceptional cyclic stability (∼99.6% of capacitance retention) over 10 000 cycles. To exploit the mechanical strength of the as-fabricated graphene aerosol gel-based solid-state MSC, its supercapacitive performance was scrutinized under various bending and twisting angles and the results showed excellent mechanical flexibility. Furthermore, to study the electrochemical performance of the as-fabricated graphene aerosol gel solid-state MSC in stringent surroundings, a broad temperature dependent supercapacitive analysis was performed as stated above. The electrochemical results of the as-fabricated graphene aerosol gel based all-solid-state MSC exhibit a highly potential route to develop scalable and authentic future miniaturized energy storage devices for IoT based smart electronic appliances. 
    more » « less
  3. Abstract All‐solid‐state flexible asymmetric supercapacitors (ASCs) are developed by utilization of graphene nanoribbon (GNR)/Co0.85Se composites as the positive electrode, GNR/Bi2Se3composites as the negative electrode, and polymer‐grafted‐graphene oxide membranes as solid‐state electrolytes. Both GNR/Co0.85Se and GNR/Bi2Se3composite electrodes are developed by a facile one‐step hydrothermal growth method from graphene oxide nanoribbons as the nucleation framework. The GNR/Co0.85Se composite electrode exhibits a specific capacity of 76.4 mAh g−1at a current density of 1 A g−1and the GNR/Bi2Se3composite electrode exhibits a specific capacity of 100.2 mAh g−1at a current density of 0.5 A g−1. Moreover, the stretchable membrane solid‐state electrolytes exhibit superior ionic conductivity of 108.7 mS cm−1. As a result, the flexible ASCs demonstrate an operating voltage of 1.6 V, an energy density of 30.9 Wh kg−1at the power density of 559 W kg−1, and excellent cycling stability with 89% capacitance retention after 5000 cycles. All these results demonstrate that this study provides a simple, scalable, and efficient approach to fabricate high performance flexible all‐solid‐state ASCs for energy storage. 
    more » « less
  4. Electrochemical double-layer capacitors (EDLCs) provide high power density and long cycle life energy storage. This work examines the use of inexpensive, raw coal char as an electrode material for supercapacitors. The effect of electrolyte composition on the performance of coal char supercapacitors is explored for the first time to determine the relative contributions of double-layer capacitance vs. faradaic reactions on total charge storage. Six electrolytes are examined with coal char electrodes, including: four aqueous electrolytes (0.5 M H 2 SO 4 , 6 M KOH, 0.5 M Na 2 SO 4 , 4 M LiNO 3 ); a water-in-salt electrolyte using 13 m NaClO 4 ; and an ionic liquid electrolyte (1-butyl-3-methylimidazolium tetrafluoroborate in acetonitrile). Voltage range, specific capacitance, electrochemical impedance, and charge–discharge characteristics of the coal char in the different electrolytes are characterized. The results indicate that neutral aqueous, water-in-salt, and ionic liquid electrolytes present a charging/discharging process approaching ideal EDLC behavior. The study provides insight into the optimal electrolyte composition for use with coal char electrodes and contributes to the current understanding of electrode-electrolyte interactions in carbon supercapacitors. 
    more » « less
  5. Hierarchically porous electrodes made of electrochemically active materials and conductive additives may display synergistic effects originating from the interactions between the constituent phases, and this approach has been adopted for optimizing the performances of many electrode materials. Here we report our findings in design, fabrication, and characterization of a hierarchically porous hybrid electrode composed of α-NiS nanorods decorated on reduced graphene oxide (rGO) (denoted as R-NiS/rGO), derived from water-refluxed metal–organic frameworks/rGO (Ni-MOF-74/rGO) templates. Microanalyses reveal that the as-synthesized α-NiS nanorods have abundant (101) and (110) surfaces on the edges, which exhibit a strong affinity for OH − in KOH electrolyte, as confirmed by density functional theory-based calculations. The results suggest that the MOF-derived α-NiS nanorods with highly exposed active surfaces are favorable for fast redox reactions in a basic electrolyte. Besides, the presence of rGO in the hybrid electrode greatly enhances the electronic conductivity, providing efficient current collection for fast energy storage. Indeed, when tested in a supercapacitor with a three-electrode configuration in 2 M KOH electrolyte, the R-NiS/rGO hybrid electrode exhibits a capacity of 744 C g −1 at 1 A g −1 and 600 C g −1 at 50 A g −1 , indicating remarkable rate performance, while maintaining more than 89% of the initial capacity after 20 000 cycles. Moreover, when coupled with a nitrogen-doped graphene aerogel (C/NG-A) negative electrode, the hybrid supercapacitor (R-NiS/rGO/electrolyte/C/NG-A) achieved an ultra-high energy density of 93 W h kg −1 at a power density of 962 W kg −1 , while still retaining an energy density of 54 W h kg −1 at an elevated working power of 46 034 W kg −1 . 
    more » « less