Liveness Detection (LivDet)-Face is an international competition series open to academia and industry. The competition’s objective is to assess and report state-of-the-art in liveness / Presentation Attack Detection (PAD) for face recognition. Impersonation and presentation of false samples to the sensors can be classified as presentation attacks and the ability for the sensors to detect such attempts is known as PAD. LivDet-Face 2021 * will be the first edition of the face liveness competition. This competition serves as an important benchmark in face presentation attack detection, offering (a) an independent assessment of the current state of the art in face PAD, and (b) a common evaluation protocol, availability of Presentation Attack Instruments (PAI) and live face image dataset through the Biometric Evaluation and Testing (BEAT) platform. The competition can be easily followed by researchers after it is closed, in a platform in which participants can compare their solutions against the LivDet-Face winners.
more »
« less
Unconstrained Face Detection and Open-Set Face Recognition Challenge
Face detection and recognition benchmarks have shifted
toward more difficult environments. The challenge presented
in this paper addresses the next step in the direction
of automatic detection and identification of people from
outdoor surveillance cameras. While face detection has
shown remarkable success in images collected from the
web, surveillance cameras include more diverse occlusions,
poses, weather conditions and image blur. Although face
verification or closed-set face identification have surpassed
human capabilities on some datasets, open-set identification
is much more complex as it needs to reject both unknown
identities and false accepts from the face detector.
We show that unconstrained face detection can approach
high detection rates albeit with moderate false accept rates.
By contrast, open-set face recognition is currently weak and
requires much more attention.
more »
« less
- NSF-PAR ID:
- 10053704
- Date Published:
- Journal Name:
- International Joint Conference on Biometrics
- Page Range / eLocation ID:
- 697 to 706
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Agaian, Sos S. ; Jassim, Sabah A. (Ed.)Face recognition technologies have been in high demand in the past few decades due to the increase in human-computer interactions. It is also one of the essential components in interpreting human emotions, intentions, facial expressions for smart environments. This non-intrusive biometric authentication system relies on identifying unique facial features and pairing alike structures for identification and recognition. Application areas of facial recognition systems include homeland and border security, identification for law enforcement, access control to secure networks, authentication for online banking and video surveillance. While it is easy for humans to recognize faces under varying illumination conditions, it is still a challenging task in computer vision. Non-uniform illumination and uncontrolled operating environments can impair the performance of visual-spectrum based recognition systems. To address these difficulties, a novel Anisotropic Gradient Facial Recognition (AGFR) system that is capable of autonomous thermal infrared to visible face recognition is proposed. The main contribution of this paper includes a framework for thermal/fused-thermal-visible to visible face recognition system and a novel human-visual-system inspired thermal-visible image fusion technique. Extensive computer simulations using CARL, IRIS, AT&T, Yale and Yale-B databases demonstrate the efficiency, accuracy, and robustness of the AGFR system. Keywords: Infrared thermal to visible facial recognition, anisotropic gradient, visible-to-visible face recognition, nonuniform illumination face recognition, thermal and visible face fusion methodmore » « less
-
Facial analysis systems have been deployed by large companies and critiqued by scholars and activists for the past decade. Many existing algorithmic audits examine the performance of these systems on later stage elements of facial analysis systems like facial recognition and age, emotion, or perceived gender prediction; however, a core component to these systems has been vastly understudied from a fairness perspective: face detection, sometimes called face localization. Since face detection is a pre-requisite step in facial analysis systems, the bias we observe in face detection will flow downstream to the other components like facial recognition and emotion prediction. Additionally, no prior work has focused on the robustness of these systems under various perturbations and corruptions, which leaves open the question of how various people are impacted by these phenomena. We present the first of its kind detailed benchmark of face detection systems, specifically examining the robustness to noise of commercial and academic models. We use both standard and recently released academic facial datasets to quantitatively analyze trends in face detection robustness. Across all the datasets and systems, we generally find that photos of individuals who are masculine presenting, older, of darker skin type, or have dim lighting are more susceptible to errors than their counterparts in other identities.more » « less
-
Automated face recognition is a widely adopted machine learning technology for contactless identification of people in various processes such as automated border control, secure login to electronic devices, community surveillance, tracking school attendance, workplace clock in and clock out. Using face masks have become crucial in our daily life with the recent world-wide COVID-19 pandemic. The use of face masks causes the performance of conventional face recognition technologies to degrade considerably. The effect of mask-wearing in face recognition is yet an understudied issue. In this paper, we address this issue by evaluating the performance of a number of face recognition models which are tested by identifying masked and unmasked face images. We use six conventional machine learning algorithms, which are SVC, KNN, LDA, DT, LR and NB, to find out the ones which perform best, besides the ones which poorly perform, in the presence of masked face images. Local Binary Pattern (LBP) is utilized as the feature extraction operator. We generated and used synthesized masked face images. We prepared unmasked, masked, and half-masked training datasets and evaluated the face recognition performance against both masked and unmasked images to present a broad view of this crucial problem. We believe that our study is unique in elaborating the mask-aware facial recognition with almost all possible scenarios including half_masked-to-masked and half_masked-to-unmasked besides evaluating a larger number of conventional machine learning algorithms compared the other studies in the literature.more » « less
-
In this paper we proposed a real-time face mask detection and recognition for CCTV surveillance camera videos. The proposed work consists of six steps: video acquisition and keyframes selection, data augmentation, facial parts segmentation, pixel-based feature extraction, Bag of Visual Words (BoVW) generation, face mask detection, and face recognition. In the first step, a set of keyframes are selected using histogram of gradient (HoG) algorithm. Secondly, data augmentation is involved with three steps as color normalization, illumination correction (CLAHE), and poses normalization (Angular Affine Transformation). In third step, facial parts are segmented using clustering approach i.e. Expectation Maximization with Gaussian Mixture Model (EM-GMM), in which facial regions are segmented into Eyes, Nose, Mouth, Chin, and Forehead. Then, Pixel-based Feature Extraction is performed using Yolo Nano approach, which performance is higher and lightweight model than the Yolo Tiny V2 and Yolo Tiny V3, and extracted features are constructed into Codebook by Hassanat Similarity with K-Nearest neighbor (H-M with KNN) algorithm. For mask detection, L2 distance function is used. The final step is face recognition which is implemented by a Kernel-based Extreme Learning Machine with Slime Mould Optimization (SMO). Experiments conducted using Python IDLE 3.8 for the proposed Yolo Nano model and also previous works as GMM with Deep learning (GMM+DL), Convolutional Neural Network (CNN) with VGGF, Yolo Tiny V2, and Yolo Tiny V3 in terms of various performance metrics.more » « less