The design of optimal auctions is a problem of interest in economics, game theory and computer science. Despite decades of effort, strategyproof, revenue-maximizing auction designs are still not known outside of restricted settings. However, recent methods using deep learning have shown some success in approximating optimal auctions, recovering several known solutions and outperforming strong baselines when optimal auctions are not known. In addition to maximizing revenue, auction mechanisms may also seek to encourage socially desirable constraints such as allocation fairness or diversity. However, these philosophical notions neither have standardization nor do they have widely accepted formal definitions. In this paper, we propose PreferenceNet, an extension of existing neural-network-based auction mechanisms to encode constraints using (potentially human-provided) exemplars of desirable allocations. In addition, we introduce a new metric to evaluate an auction allocations' adherence to such socially desirable constraints and demonstrate that our proposed method is competitive with current state-of-the-art neural-network based auction designs. We validate our approach through human subject research and show that we are able to effectively capture real human preferences.
more »
« less
Low Complexity Node Clustering in Cloud-RAN for Service Provisioning and Resource Allocation
Auction-based service provisioning and resource allocation have demonstrated strong potential in Cloud-RAN wireless network architecture and heterogeneous networks for effective resource sharing. One major technical challenge is the integration of interference constraints in auction-based solutions. In this work we transform the interference constraint requirement into a set of linear constraints on each cluster. We tackle the generally NP-hard clustering problem by developing a novel practical suboptimal solution that can meet our design requirement. Our novel algorithm utilizes the properties of chordal graphs and applies Lexicographic Breadth First Search (Lex-BFS) algorithm for cluster splitting. This polynomial time approximate algorithm searches for maximal cliques in a graph by generating strong performance in terms of subgraph density and probability of optimal clustering without suffering from the high complexity of the optimal solution.
more »
« less
- PAR ID:
- 10054099
- Date Published:
- Journal Name:
- 2017 IEEE GLOBECOM
- Page Range / eLocation ID:
- 1 to 6
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Round genomes are found in bacteria, plant chloroplasts, and mitochondria. Genetic or epigenetic marks can present biologically interesting clusters along a circular genome. The circular data clustering problem groups N points on a circle into K clusters to minimize the within-cluster sum of squared distances. Repeatedly applying the K-means algorithm takes quadratic time, impractical for large circular datasets. To overcome this issue, we developed a fast, reproducible, and optimal circular clustering (FOCC) algorithm of worst-case O(KN log^2 N) time. The core is a fast optimal framed clustering algorithm, which we designed by integrating two divide-and-conquer and one bracket dynamic programming strategies. The algorithm is optimal based on a property of monotonic increasing cluster borders over frames on linearized data. On clustering 50,000 circular data points, FOCC outruns brute-force or heuristic circular clustering by three orders of magnitude. We produced clusters of CpG sites and genes along three round genomes, exhibiting higher quality than heuristic clustering. More broadly, the presented subquadratic-time algorithms offer the fastest known solution to not only framed and circular clustering, but also angular, periodical, and looped clustering. We implemented these algorithms in the R package OptCirClust (https://CRAN.R-project.org/package=OptCirClust)more » « less
-
We provide a new bi-criteria O(log2k) competitive algorithm for explainable k-means clustering. Explainable k-means was recently introduced by Dasgupta, Frost, Moshkovitz, and Rashtchian (ICML 2020). It is described by an easy to interpret and understand (threshold) decision tree or diagram. The cost of the explainable k-means clustering equals to the sum of costs of its clusters; and the cost of each cluster equals the sum of squared distances from the points in the cluster to the center of that cluster. The best non bi-criteria algorithm for explainable clustering O(k) competitive, and this bound is tight. Our randomized bi-criteria algorithm constructs a threshold decision tree that partitions the data set into (1+δ)k clusters (where δ∈(0,1) is a parameter of the algorithm). The cost of this clustering is at most O(1/δ⋅log2k) times the cost of the optimal unconstrained k-means clustering. We show that this bound is almost optimal.more » « less
-
Bansal, Nikhil and (Ed.)his paper presents universal algorithms for clustering problems, including the widely studied k-median, k-means, and k-center objectives. The input is a metric space containing all potential client locations. The algorithm must select k cluster centers such that they are a good solution for any subset of clients that actually realize. Specifically, we aim for low regret, defined as the maximum over all subsets of the difference between the cost of the algorithm’s solution and that of an optimal solution. A universal algorithm’s solution sol for a clustering problem is said to be an (α, β)-approximation if for all subsets of clients C', it satisfies sol(C') ≤ α ⋅ opt(C') + β ⋅ mr, where opt(C') is the cost of the optimal solution for clients C' and mr is the minimum regret achievable by any solution. Our main results are universal algorithms for the standard clustering objectives of k-median, k-means, and k-center that achieve (O(1), O(1))-approximations. These results are obtained via a novel framework for universal algorithms using linear programming (LP) relaxations. These results generalize to other 𝓁_p-objectives and the setting where some subset of the clients are fixed. We also give hardness results showing that (α, β)-approximation is NP-hard if α or β is at most a certain constant, even for the widely studied special case of Euclidean metric spaces. This shows that in some sense, (O(1), O(1))-approximation is the strongest type of guarantee obtainable for universal clustering.more » « less
-
We consider the problem of clustering with user feedback. Existing methods express constraints about the input data points, most commonly through must-link and cannot-link constraints on data point pairs. In this paper, we introduce existential cluster constraints: a new form of feedback where users indicate the features of desired clusters. Specifically, users make statements about the existence of a cluster having (and not having) particular features. Our approach has multiple advantages: (1) constraints on clusters can express user intent more efficiently than point pairs; (2) in cases where the users’ mental model is of the desired clusters, it is more natural for users to express cluster-wise preferences; (3) it functions even when privacy restrictions prohibit users from seeing raw data. In addition to introducing existential cluster constraints, we provide an inference algorithm for incorporating our constraints into the output clustering. Finally, we demonstrate empirically that our proposed framework facilitates more accurate clustering with dramatically fewer user feedback inputs.more » « less